- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Which one of the following is a polynomial?
(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$
(B) $\sqrt{2 x}-1$
(C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
Given :
The given expressions are,
(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$
(B) $\sqrt{2 x}-1$
(C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
To do :
We have to find which of the given expressions is polynomial.
Solution :
Polynomials: Polynomials are expressions in which each term is a constant multiplied by a variable raised to a whole number power.
(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$ is not a polynom[Math Processing Error]ial because the term $- \frac{2}{x^2}$ is equal to $-2x^{-2}$ and in this term the variable x is raised to the power $-2$ which is not a whole number.
So, $\frac{x^{2}}{2}-\frac{2}{x^{2}}$ is not a polynomial.
So, $\sqrt{2 x}-1$ is no a polynomial.
(C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}} = x^2 + 3 x^{\frac{3}{2} - \frac{1}{2}} = x^2 + 3x$. Here, the variables(x) in the terms are raised to a whole number power.
Therefore, option (C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$ is a polynomial.
[Math Processing Errorial because the term √2x is equal to √2x1/2 and in this term the variable x is raised to the power 1/2
- Related Articles
- Find the following products:
(i) $(x + 4) (x + 7)$
(ii) $(x - 11) (x + 4)$
(iii) $(x + 7) (x - 5)$
(iv) $(x - 3) (x - 2)$
(v) $(y^2 - 4) (y^2 - 3)$
(vi) $(x + \frac{4}{3}) (x + \frac{3}{4})$
(vii) $(3x + 5) (3x + 11)$
(viii) $(2x^2 - 3) (2x^2 + 5)$
(ix) $(z^2 + 2) (z^2 - 3)$
(x) $(3x - 4y) (2x - 4y)$
(xi) $(3x^2 - 4xy) (3x^2 - 3xy)$
(xii) $(x + \frac{1}{5}) (x + 5)$
(xiii) $(z + \frac{3}{4}) (z + \frac{4}{3})$
(xiv) $(x^2 + 4) (x^2 + 9)$
(xv) $(y^2 + 12) (y^2 + 6)$
(xvi) $(y^2 + \frac{5}{7}) (y^2 - \frac{14}{5})$
(xvii) $(p^2 + 16) (p^2 - \frac{1}{4})$ - Verify whether the following are zeroes of the polynomial, indicated against them.(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- If $p(x) = x^2 - 2\sqrt{2}x+1$, then find the value of $p(2\sqrt{2})$.
- If $p(x)=x^{2}-2 \sqrt{2} x+1$, then what is the value of $p(2 \sqrt{2})$
- Find the value of \( k \), if \( x-1 \) is a factor of \( p(x) \) in each of the following cases:(i) \( p(x)=x^{2}+x+k \)(ii) \( p(x)=2 x^{2}+k x+\sqrt{2} \)(iii) \( p(x)=k x^{2}-\sqrt{2} x+1 \)(iv) \( p(x)=k x^{2}-3 x+k \)
- Find and correct the errors in the following.(a) \( (2 x+5)^{2}=4 x^{2}+25 \)(b) \( \left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=x^{2}-\frac{1}{4} \)(c) \( (5 a-b)^{2}=10 a^{2}-5 a b+b^{2} \)(d) \( (p-3)(p-7)=p^{2}+21 \)
- Identify polynomials in the following:\( p(x)=\frac{2}{3} x^{2}-\frac{7}{4} x+9 \)
- If $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$, find the value $x^{2}+y^{2}+x y$.
- If \( x-\frac{1}{x}=3+2 \sqrt{2} \), find the value of \( x^{3}- \frac{1}{x^{3}} \).
- Solve for $x$:$\frac{1}{x}+\frac{2}{2x-3}=\frac{1}{x-2}, x≠0, \frac{3}{2}, 2$
- Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- Simplify the following using the formula: $(a - b) (a + b) = a^2 - b^2$:
(i) $(82)^2 - (18)^2$
(ii) $(467)^2 - (33)^2$
(iii) $(79)^2 - (69)^2$
(iv) $197 \times 203$
(v) $113 \times 87$
(vi) $95 \times 105$
(vii) $1.8 \times 2.2$
(viii) $9.8 \times 10.2$ - If \( x=\frac{1}{3+2 \sqrt{2}}, \) then the value of \( x-\frac{1}{x} \) is
- If $x = -\frac{1}{2}$ is a zero of the polynomial $p(x) = 8x^3 - ax^2 - x + 2$, find the value of $a$.
- If $x\ =\ 2\ +\ 3\sqrt{2}$Find $x\ + \frac{4}{x}$.
