- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Three vertices of a parallelogram are $(a + b, a โ b), (2 a + b, 2a โ b), (a โ b, a + b)$. Find the fourth vertex.
Given:
Three vertices of a parallelogram are $(a + b, a – b), (2 a + b, 2a – b), (a – b, a + b)$.
To do:
We have to find the fourth vertex.
Solution:
Let the coordinates of the three vertices are $A(a + b, a – b), B(2 a + b, 2a – b), C(a – b, a + b)$.
Let the fourth vertex be $D(x,y)$ and the diagonals $AC$ and $BD$ bisect each other at $O$.
This implies,
\( \mathrm{O} \) is the mid-point of \( \mathrm{AC} \).
The coordinates of \( \mathrm{O} \) are \( (\frac{(a+b)+(a-b)}{2}, \frac{(a-b)+(a+b)}{2}) \)
\( =(\frac{2a}{2}, \frac{2a}{2}) \)
\( =(a,a) \)
\( \mathrm{O} \) is the mid-point of \( \mathrm{BD} \).
The coordinates of \( \mathrm{O} \) are \( (\frac{2a+b+x}{2}, \frac{2a-b+y}{2}) \)
Therefore,
\( (a,a)=(\frac{2a+b+x}{2}, \frac{2a-b+y}{2}) \)
On comparing, we get,
\( \frac{2a+b+x}{2}=a \)
\( 2a+b+x=2(a) \)
\( x=2a-2a-b=-b \)
Similarly,
\( \frac{2a-b+y}{2}=a \)
\( 2a-b+y=2(a) \)
\( y=2a-2a+b \)
\( y=b \)
Therefore, the coordinates of the fourth vertex are $(-b,b)$.