Prove that $ (a-b)^{2}, a^{2}+b^{2} $ and $ (a+b)^{2} $ are three consecutive terms of an AP.
To do:
We have to prove that \( (a-b)^{2}, a^{2}+b^{2} \) and \( (a+b)^{2} \) are three consecutive terms of an AP.
Solution:
If $a, b, c$ are three consecutive terms of an AP then $b-a=c-b$
Here,
$a^{2}+b^{2}-((a-b)^{2})=a^2+b^2-(a^2-2ab+b^2)$
$=a^2-a^2+b^2-b^2+2ab$
$=2ab$
$(a+b)^{2}-(a^2+b^2)=a^2+2ab+b^2-a^2-b^2$
$=2ab$
$a^{2}+b^{2}-((a-b)^{2})=(a+b)^{2}-(a^2+b^2)$
Therefore, \( (a-b)^{2}, a^{2}+b^{2} \) and \( (a+b)^{2} \) are three consecutive terms of an AP.
- Related Articles
- Prove that:\( \sin ^{2} A \cos ^{2} B-\cos ^{2} A \sin ^{2} B=\sin ^{2} A-\sin ^{2} B \)
- Prove that:\( \tan ^{2} A \sec ^{2} B-\sec ^{2} A \tan ^{2} B=\tan ^{2} A-\tan ^{2} B \)
- Show that $(a – b)^2, (a^2 + b^2)$ and $(a + b)^2$ are in A.P.
- If \( x=\frac{\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}-b^{2}}}{\sqrt{a^{2}+b^{2}}-\sqrt{a^{2}-b^{2}}} \), then prove that \( b^{2} x^{2}-2 a^{2} x+b^{2}=0 \).
- Show that $(a−b)^2,\ (a^2+b^2),\ (a+b)^2$ are in A.P.
- Prove that:\( \cot ^{2} A \operatorname{cosec}^{2} B-\cot ^{2} B \operatorname{cosec}^{2} A=\cot ^{2} A-\cot ^{2} B \)
- Suppose $a,\ b,\ c$ are in AP, then prove that $b=\frac{a+c}{2}$.
- Prove that \( \frac{a^{-1}}{a^{-1}+b^{-1}}+\frac{a^{-1}}{a^{-1}-b^{-1}}=\frac{2 b^{2}}{b^{2}-a^{2}} \)
- If $a ≠ b ≠ 0$, prove that the points $(a, a^2), (b, b^2), (0, 0)$ are never collinear.
- If \( a+b=5 \) and \( a b=2 \), find the value of(a) \( (a+b)^{2} \)(b) \( a^{2}+b^{2} \)(c) \( (a-b)^{2} \)
- If $a=2$ and $b=-2$ find the value of $(i)$. $a^2+b^2$$(ii)$. $a^2+ab+b^2$$(iii)$. $a^{2}-b^2$
- If \( a+b=5 \) and \( a b=2 \), find the value of(a) \( (a+b)^{2} \)(b) \( a^{2}+b^{2} \)
- If $a ≠ b ≠ c$, prove that the points $(a, a^2), (b, b^2), (c, c^2)$ can never be collinear.
- Prove the following identities:If \( x=a \sec \theta+b \tan \theta \) and \( y=a \tan \theta+b \sec \theta \), prove that \( x^{2}-y^{2}=a^{2}-b^{2} \)
- If \( tan \theta = \frac{a}{b} \), prove that\( \frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \).
Kickstart Your Career
Get certified by completing the course
Get Started