- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $a = 3$ and $b =-2$, find the values of:$a^b + b^a$
Given:
$a = 3$ and $b =-2$
To do:
We have to find the value of $a^b+ b^a$.
Solution:
We know that,
$a^{-m}=\frac{1}{a^m}$
Therefore,
$a^b+ b^a=(3)^{-2}+(-2)^{3}$
$=\frac{1}{(-3)^{2}}+(-8)$
$=\frac{1}{9}-8$
$=\frac{1-8\times9}{9}$
$=\frac{1-72}{9}$
$=\frac{-71}{9}$
Hence, $a^b+b^a=\frac{-71}{9}$.
- Related Articles
- If ( P A ) and ( P B ) are tangents from an outside point ( P ). such that ( P A=10 mathrm{~cm} ) and ( angle A P B=60^{circ} ). Find the length of chord ( A B ).
- If a point $A (0, 2)$ is equidistant from the points $B (3, p)$ and $C (p, 5)$, then find the value of $p$.
- A point $A( 0, 2)$ is equidistant from the points $B( 3, p)$ and $C( p, 5)$, then find the value of P.
- Draw a line segment ( A B=5.5 mathrm{cm} ). Find a point ( P ) on it such that ( overline{A P}=frac{2}{3} overline{P B} ).
- From an external point ( P ), tangents ( P A=P B ) are drawn to a circle with centre ( O ). If ( angle P A B=50^{circ} ), then find ( angle A O B ).
- Two tangent segments ( P A ) and ( P B ) are drawn to a circle with centre ( O ) such that ( angle A P B=120^{circ} . ) Prove that ( O P=2 A P ).
- From a point ( P ), two tangents ( P A ) and ( P B ) are drawn to a circle with centre ( O ). If ( O P= ) diameter of the circle, show that ( Delta A P B ) is equilateral.
- If the point $A( 0,2)$ is equidistant from the points $B( 3, p)$ and $C( p, 5)$, find P. Also find the length of AB.
- Find the value of:(a) ( 4.9 p 0.07 )(b) ( 26.4 p 2.4 )
- The points $A( 4, 7) , B( p, 3)$ and $C( 7, 3)$ are the vertices of a right triangle, right-angled at B, Find the values of $p$.
- If $P( 2,p)$ is the mid-point of the line segment joining the points $A( 6,-5)$ and $B( -2,11)$. Find the value of $p$.
- If $ p=-10$ find the value of $p^{2}-2 p-100 $
- If ( a, 7, b, 23, c ) form a finite ( A P ), find the values of ( a, b ) and ( c ).
- From an external point ( P ), tangents ( P A ) and ( P B ) are drawn to a circle with centre ( O ). At one point ( E ) on the circle tangent is drawn, which intersects ( P A ) and ( P B ) at ( C ) and ( D ) respectively. If ( P A=14 mathrm{~cm} ), find the perimeter of ( triangle P C D ).
- Factorise each of the following:(i) ( 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} )(ii) ( 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} )(iii) ( 27-125 a^{3}-135 a+225 a^{2} )(iv) ( 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2} )(v) ( 27 p^{3}-frac{1}{216}-frac{9}{2} p^{2}+frac{1}{4} p )
- If $a = xy^{p-1}, b = xy^{q-1}$ and $c = xy^{r-1}$, prove that $a^{q-r} b^{r-p} c^{p-q} = 1$.

Advertisements