Points $A(3,1), B(5,1), C(a,b)$ and $D(4,3)$ are vertices of a parallelogram ABCD. Find the values of $a$ and $b$.​
Given:
The points $A(3,1), B(5,1), C(a,b)$ and $D(4,3)$ are the vertices of a parallelogram $ABCD$.
To do:
We have to find the values of $a$ and $b$.
Solution:
Let the diagonals $AC$ and $BD$ bisect each other at $O$.

Using the mid-point formula, we get,
\( \mathrm{O} \) is the mid-point of \( \mathrm{AC} \)
The coordinates of \( \mathrm{O} \) are \( \left(\frac{3+a}{2}, \frac{1+b}{2}\right) \)
Similarly,
\( \mathrm{O} \) is the mid-point of \( \mathrm{BD} \).
The coordinates of \( \mathrm{O} \) are \( \left(\frac{5+4}{2}, \frac{1+3}{2}\right) \)
\( =\left(\frac{9}{2}, \frac{4}{2}\right) \)
\( =\left(\frac{9}{2}, 2\right) \)
On comparing, we get,
\( \frac{9}{2}=\frac{3+a}{2} \)
\( \Rightarrow 3+a=9 \)
\( \Rightarrow a=9-3=6 \)
\( \frac{1+b}{2}=2 \)
\( \Rightarrow b+1=4 \)
\( \Rightarrow b=4-1=3 \)
The values of $a$ and $b$ are $6$ and $3$ respectively.
- Related Articles
- If $A( 1,2) ,B( 4,3) $ and $C( 6,\ 6)$ are the three vertices of a parallelogram $ABCD$, find the coordinates of fourth vertices D.
- If the points $A (a, -11), B (5, b), C (2, 15)$ and $D (1, 1)$ are the vertices of a parallelogram $ABCD$, find the values of $a$ and $b$.
- If $A( –2,\ 1), B( a,\ 0), C( 4,\ b) $and $D( 1,\ 2)$ are the vertices of a parallelogram ABCD, find the values of a and b, Hence find the lengths of its sides.
- Three vertices of a rectangle ABCD are A(3,1),B(-3,1)andC(-3,3). Plot these points on a graph paper and find the coordinates of the fourth vertex D . Also , find the area of rectangle ABCD.
- Three vertices of a parallelogram are $(a + b, a – b), (2 a + b, 2a – b), (a – b, a + b)$. Find the fourth vertex.
- If the points $A( -2,\ 1) ,\ B( a,\ b)$ and $C( 4,\ -1)$ are collinear and $a-b=1$, find the values of $a$ and $b$.
- Show that the points $A (1, -2), B (3, 6), C (5, 10)$ and $D (3, 2)$ are the vertices of a parallelogram.
- Show that the points $A (1, 0), B (5, 3), C (2, 7)$ and $D (-2, 4)$ are the vertices of a parallelogram.
- Find the area of a parallelogram $ABCD$ if three of its vertices are $A (2, 4), B (2 + \sqrt3, 5)$ and $C (2, 6)$.
- If the points $A (6, 1), B (8, 2), C (9, 4)$ and $D (k, p)$ are the vertices of a parallelogram taken in order, then find the values of $k$ and $p$.
- Prove that the points $A (2, 3), B (-2, 2), C (-1, -2)$ and $D (3, -1)$ are the vertices of a square $ABCD$.
- The fourth vertex \( \mathrm{D} \) of a parallelogram \( \mathrm{ABCD} \) whose three vertices are \( \mathrm{A}(-2,3), \mathrm{B}(6,7) \) and \( \mathrm{C}(8,3) \) is(A) \( (0,1) \)(B) \( (0,-1) \)(C) \( (-1,0) \)(D) \( (1,0) \)
- The area of a triangle with vertices \( (a, b+c),(b, c+a) \) and \( (c, a+b) \) is(A) \( (a+b+c)^{2} \)(B) 0(C) \( a+b+c \)(D) \( a b c \)
- The points $A( 4,\ 7) ,\ B( p,\ 3)$ and $C( 7,\ 3)$ are the vertices of a right triangle, right-angled at B, Find the values of $p$.
- The points $A (2, 0), B (9, 1), C (11, 6)$ and $D (4, 4)$ are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.
Kickstart Your Career
Get certified by completing the course
Get Started