- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following system of equations:
$x\ +\ 2y\ =\ \frac{3}{2}$
$2x\ +\ y\ =\ \frac{3}{2}$
Given:
The given system of equations is:
$x\ +\ 2y\ =\ \frac{3}{2}$
$2x\ +\ y\ =\ \frac{3}{2}$
To do:
We have to solve the given system of equations.
Solution:
The given system of equations can be written as,
$x+2y=\frac{3}{2}$
$\Rightarrow 2(x+2y)=3$ (On cross multiplication)
$\Rightarrow 2x+4y=3$---(i)
$2x+y=\frac{3}{2}$
$\Rightarrow 2(2x+y)=3$ (On cross multiplication)
$\Rightarrow 4x+2y=3$
$\Rightarrow x=\frac{3-2y}{4}$----(ii)
Substitute $x=\frac{3-2y}{4}$ in equation (i), we get,
$2(\frac{3-2y}{4})+4y=3$
$\frac{3-2y}{2}+4y=3$
Multiplying by $2$ on both sides, we get,
$2(\frac{3-2y}{2})+2(4y)=2(3)$
$3-2y+8y=6$
$6y=6-3$
$y=\frac{3}{6}$
$y=\frac{1}{2}$
Substituting the value of $y=\frac{1}{2}$ in equation (ii), we get,
$x=\frac{3-2(\frac{1}{2})}{4}$
$x=\frac{3-1}{4}$
$x=\frac{2}{4}$
$x=\frac{1}{2}$
Therefore, the solution of the given system of equations is $x=\frac{1}{2}$ and $y=\frac{1}{2}$.