Solve the following pairs of equations:
$ \frac{2 x y}{x+y}=\frac{3}{2} $
$ \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠0,2 x-y ≠0 $
Given:
\( \frac{2 x y}{x+y}=\frac{3}{2} \)
\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
To do:
We have to solve the given pairs of equations.
Solution:
$\frac{2 x y}{x+y}=\frac{3}{2}$
This implies,
$\frac{x+y}{2 x y}=\frac{2}{3}$
$\frac{x}{x y}+\frac{y}{x y}=\frac{2\times2}{3}$
$\frac{1}{y}+\frac{1}{x}=\frac{4}{3}$.......(i)
$\frac{x y}{2 x-y}=\frac{-3}{10}$
$\frac{2 x-y}{x y}=\frac{-10}{3}$
$\frac{2 x}{x y}-\frac{y}{x y}=\frac{-10}{3}$
$\frac{2}{y}-\frac{1}{x}=\frac{-10}{3}$...........(ii)
Let $\frac{1}{x}=u$ and $\frac{1}{y}=v$
This implies,
$v+u=\frac{4}{3}$.........(iii)
$2 v-u=\frac{-10}{3}$........(iv)
Adding (iii) and (iv), we get,
$3 v=\frac{4}{3}-\frac{10}{3}$
$3v=\frac{4-10}{3}$
$3v=\frac{-6}{3}$
$3 v=-2$
$v=\frac{-2}{3}$
Substituting the value of $v$ in (iii), we get,
$\frac{-2}{3}+u =\frac{4}{3}$
$u=\frac{4}{3}+\frac{2}{3}$
$u=\frac{6}{3}$
$u=2$
This implies,
$x=\frac{1}{u}=\frac{1}{2}$
$y=\frac{1}{v}=\frac{1}{\frac{-2}{3}}$
$y=\frac{-3}{2}$
- Related Articles
- Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- Solve the following system of equations:$\frac{10}{x+y} +\frac{2}{x-y}=4$$\frac{15}{x+y}-\frac{9}{x-y}=-2$
- Solve the following system of equations:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
- Solve the following pairs of equations:\( x+y=3.3 \)\( \frac{0.6}{3 x-2 y}=-1,3 x-2 y ≠0 \)
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Solve the following system of equations:$\frac{5}{x+y} -\frac{2}{x-y}=-1$$\frac{15}{x+y}+\frac{7}{x-y}=10$
- Solve the following pairs of equations:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠0 \)
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Solve:$\frac{3 x}{2}-\frac{5 y}{3}=-2$$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
- Simplify: $\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$.
- Simplify: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- Find the sum of the following arithmetic progressions:\( \frac{x-y}{x+y}, \frac{3 x-2 y}{x+y}, \frac{5 x-3 y}{x+y}, \ldots \) to \( n \) terms
- Solve the following system of equations: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 13$$\frac{5}{x}\ –\ \frac{4}{y}\ =\ -2$
- Solve the following system of equations: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 2$ $\frac{4}{x}\ –\ \frac{9}{y}\ =\ -1$
- Solve the following system of equations: $\frac{3}{x}\ –\ \frac{1}{y}\ =\ −9$ $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 5$
Kickstart Your Career
Get certified by completing the course
Get Started