- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following system of equations:
$\frac{2}{x}\ +\ \frac{3}{y}\ =\ \frac{9}{xy}$
$\frac{4}{x}\ +\ \frac{9}{y}\ =\ \frac{21}{xy}$
Given:
The given system of equations is:
$\frac{2}{x}\ +\ \frac{3}{y}\ =\ \frac{9}{xy}$
$\frac{4}{x}\ +\ \frac{9}{y}\ =\ \frac{21}{xy}$
To do:
We have to solve the given system of equations.
Solution:
The given system of equations can be written as,
$\frac{2}{x}+\frac{3}{y}=\frac{9}{xy}$
$\frac{2y+3x}{xy}=\frac{9}{xy}$
$3x+2y=9$---(i)
$\frac{4}{x}+\frac{9}{y}=\frac{21}{xy}$
$\frac{4y+9x}{xy}=\frac{21}{xy}$
$9x+4y=21$
$9x=21-4y$
$x=\frac{21-4y}{9}$---(ii)
Substituting $x=\frac{21-4y}{9}$ in equation (i), we get,
$3(\frac{21-4y}{9})+2y=9$
$\frac{21-4y}{3}+2y=9$
Multiplying both sides of the equation by $3$, we get,
$3(\frac{21-4y}{3})+3(2y)=3(9)$
$21-4y+6y=27$
$2y=27-21$
$2y=6$
$y=\frac{6}{2}$
$y=3$
Using $y=3$ in equation (i), we get,
$3x+2(3)=9$
$3x+6=9$
$3x=9-6$
$3x=3$
$x=\frac{3}{3}$
$x=1$
Therefore, the solution of the given system of equations is $x=1$ and $y=3$.