- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following system of equations:
$x\ +\ \frac{y}{2}\ =\ 4$
$2y\ +\ \frac{x}{3}\ =\ 5$
Given:
The given system of equations is:
$x\ +\ \frac{y}{2}\ =\ 4$
$2y\ +\ \frac{x}{3}\ =\ 5$
To do:
We have to solve the given system of equations.
Solution:
The given system of equations can be written as,
$x+\frac{y}{2}=4$
$\Rightarrow \frac{2x+y}{2}=4$
$\Rightarrow 2x+y=2(4)$
$\Rightarrow 2x+y=8$---(i)
$2y+\frac{x}{3}=5$
$\Rightarrow \frac{3(2y)+x}{3}=5$
$\Rightarrow x+6y=3(5)$
$\Rightarrow x=15-6y$----(ii)
Substitute $x=15-6y$ in equation (i), we get,
$2(15-6y)+y=8$
$30-12y+y=8$
$-11y=8-30$
$-11y=-22$
$y=\frac{-22}{-11}$
$y=2$
Substituting the value of $y=2$ in equation (ii), we get,
$x=15-6(2)$
$x=15-12$
$x=3$
Therefore, the solution of the given system of equations is $x=3$ and $y=2$.
Advertisements