Solve the following:
$\frac{y-1}{3}-\frac{y-2}{4}=1$
Given :
The given expression is $\frac{y-1}{3}-\frac{y-2}{4}=1$.
To do :
We have to find the value of y.
Solution :
$\frac{y-1}{3}-\frac{y-2}{4}=1$
LCM of 3 and 4 is 12.
So,
$\frac{4(y-1)}{3\times 4}-\frac{3(y-2)}{4\times 3}=1$
$\frac{4y-4}{12}-\frac{3y-6}{12}=1$
$\frac{4y-4 - (3y-6)}{12} = 1$
$\frac{4y-4 - 3y+6}{12} = 1$
$\frac{4y- 3y+6 -4}{12} = 1$
$\frac{y+2}{12} = 1$
$y+2 = 12$
$y = 12-1$
$y = 11$
Therefore, the value of y is 11.
- Related Articles
- Solve the following system of equations:$\frac{1}{3x+y} +\frac{1}{3x-y}=\frac{3}{4}$$\frac{1}{2(3x+y)}-\frac{1}{2(3x-y)}=-\frac{1}{8}$
- Which of the following is not true?A. $( y+\frac{1}{y})^2=( y-\frac{1}{y})^2+4$B. $( y-\frac{1}{y})^2+2=y^2+\frac{1}{y^2}$C. $( y+\frac{1}{y})^2-2=( y-\frac{1}{y})^2$D. $( y-\frac{1}{y})^2-( y+\frac{1}{y})^2=-(2)^2$
- Solve the following system of equations: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 2$ $\frac{4}{x}\ –\ \frac{9}{y}\ =\ -1$
- Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Solve the following$\frac{7 y+4}{y+2}=\frac{-4}{3} $
- Solve the following system of equations:$\frac{5}{x-1} +\frac{1}{y-2}=2$$\frac{6}{x-1}-\frac{3}{y-2}=1$
- Solve the following system of equations:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
- Solve the following pairs of equations:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- Solve the following equations.\( \frac{7 y+4}{y+2}=\frac{-4}{3} \).
- Solve the following equations:\( 8^{x+1}=16^{y+2} \) and, \( \left(\frac{1}{2}\right)^{3+x}=\left(\frac{1}{4}\right)^{3 y} \)
- Factorize: $( y+\frac{1}{y})^{2}-5( y+\frac{1}{y})+4$.
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Solve the following system of equations:$\frac{5}{x+1} -\frac{2}{y-1}=\frac{1}{2}$$\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$, where $x≠-1$ and $y≠1$
- Simplify: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
Kickstart Your Career
Get certified by completing the course
Get Started