- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove the following trigonometric identities:$ \frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}=\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta} $
To do:
We have to prove that \( \frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}=\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta} \).
Solution:
We know that,
$\cos ^{2} \theta+\sin^2 \theta=1$.......(i)
Therefore,
$\frac{(1+\sin \theta)^{2}+(1-\sin \theta)^{2}}{2 \cos ^{2} \theta}=\frac{1+\sin^2 \theta+2\sin \theta+1-2\sin \theta+\sin^2 \theta}{2\cos^2 \theta}$
$=\frac{2+2\sin^2 \theta}{2\cos^2 \theta}$
$=\frac{2(1+\sin^2 \theta)}{2\cos^2 \theta}$
$=\frac{1+\sin^2 \theta}{\cos^2 \theta}$
$=\frac{1+\sin^2 \theta}{1-\sin^2 \theta}$ [From (i)]
Hence proved.
Advertisements