- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that:$ \frac{1+\cos \theta-\sin ^{2} \theta}{\sin \theta(1+\cos \theta)}=\cot \theta $
To do:
We have to prove that \( \frac{1+\cos \theta-\sin ^{2} \theta}{\sin \theta(1+\cos \theta)}=\cot \theta \).
Solution:
We know that,
$\sin^2 A+\cos^2 A=1$
$\operatorname{cosec}^2 A-\cot^2 A=1$
$\sec^2 A-\tan^2 A=1$
$\cot A=\frac{\cos A}{\sin A}$
$\tan A=\frac{\sin A}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sec A=\frac{1}{\cos A}$
Therefore,
$\frac{1+\cos \theta-\sin ^{2} \theta}{\sin \theta(1+\cos \theta)}=\frac{1-\sin ^{2} \theta+\cos \theta}{\sin \theta(1+\cos \theta)}$
$=\frac{\cos ^{2} \theta+\cos \theta}{\sin \theta(1+\cos \theta)}$
$=\frac{\cos \theta+\cos ^{2} \theta}{\sin \theta(1+\cos \theta)}$
$=\frac{\cos \theta(1+\cos \theta)}{\sin \theta(1+\cos \theta)}$
$=\frac{\cos \theta}{\sin \theta}$
$=\cot \theta$
Hence proved.