- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove the following trigonometric identities:$ \cot \theta-\tan \theta=\frac{2 \cos ^{2} \theta-1}{\sin \theta \cos \theta} $
To do:
We have to prove that \( \cot \theta-\tan \theta=\frac{2 \cos ^{2} \theta-1}{\sin \theta \cos \theta} \).
Solution:
We know that,
$\cot \theta=\frac{\cos \theta}{\sin \theta}$.....(i)
$\tan \theta=\frac{\sin \theta}{\cos \theta}$.....(ii)
$\cos ^{2} \theta+\sin^2 \theta=1$.......(iii)
Therefore,
$\cot \theta-\tan \theta=\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}$ [From (i) and (ii)]
$=\frac{\cos^2 \theta-\sin^2 \theta}{\sin \theta\cos \theta}$
$=\frac{\cos^2 \theta-(1-\cos^2 \theta)}{\sin \theta\cos \theta}$ [From (iii)]
$=\frac{2\cos^2 \theta-1}{\sin \theta\cos \theta}$
Hence proved.
Advertisements