$ \mathrm{ABCD} $ is a rhombus and $ \mathrm{P}, \mathrm{Q}, \mathrm{R} $ and $ \mathrm{S} $ are the mid-points of the sides $ \mathrm{AB}, \mathrm{BC}, \mathrm{CD} $ and DA respectively. Show that the quadrilateral $ \mathrm{PQRS} $ is a rectangle.
Given:
\( \mathrm{ABCD} \) is a rhombus and \( \mathrm{P}, \mathrm{Q}, \mathrm{R} \) and \( \mathrm{S} \) are the mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and DA respectively.
To do: We have to show that the quadrilateral \( \mathrm{PQRS} \) is a rectangle. Solution:
Join $PQ,QR,RS,PS,AC$ and $BD$.
In $\triangle DRS$ and $\triangle BPQ$,
$DS = BQ$ ($\frac{AD}{2}=\frac{BC}{2}$)
$\angle SDR = \angle QBP$ (Opposite angles of a rhombus are equal to each other)
$DR = BP$ ($\frac{CD}{2}=\frac{AB}{2}$)
Therefore, by SAS congruency, we get,
$\triangle DRS \cong \triangle BPQ$
This implies,
$RS = PQ$ (CPCT)............(i)
$In \triangle CQR$ and $\triangle ASP$,
$RC = PA$ ($\frac{CD}{2}=\frac{AB}{2}$)
$\angle RCQ = \angle PAS$ (Opposite angles of the rhombus)
$CQ = AS$ ($\frac{BC}{2}=\frac{AD}{2}$)
Therefore, by SAS congruency, we get,
$\triangle QCR \cong \triangle SAP$
This implies,
$RQ = SP$ (CPCT)...............(ii)
In $\triangle CBD$,
$R$ and $Q$ are the mid points of $CD$ and $BC$ respectively.
This implies,
$QR \| BD$
In $\triangle ABD$,
$P$ and $S$ are the mid points of $AD$ and $AB$ respectively.
This implies,
$PS \| BD$
Therefore,
$QR \| PS$............(iii)
From (i), (ii) and (iii), we get,
$PQRS$ is a parallelogram.
$AB$ is a straight line.
$\angle APS + \angle SPQ + \angle QPB = 180^o$
$BC$ is a straight line.
$\angle PQB + \angle PQR + \angle CQR = 180^o$
$\angle APS + \angle SPQ + \angle QPB = \angle PQB + \angle PQR + \angle CQR$
$\angle APS + \angle SPQ + \angle QPB = \angle QPB + \angle PQR + \angle APS$
$\angle SPQ = \angle PQR$
$\angle SPQ + \angle PQR = 180^o$ (Adjacent angles of a parallelogram are supplementary)
$2\angle PQR = 180^o$
$PQR = 90^o$
In $PQRS$,
$RS = PQ$
$RQ = SP$
$\angle Q = 90^o$
Therefore,
$PQRS$ is a rectangle.
Related Articles \( \mathrm{ABCD} \) is a rectangle and \( \mathrm{P}, \mathrm{Q}, \mathrm{R} \) and \( \mathrm{S} \) are mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and \( \mathrm{DA} \) respectively. Show that the quadrilateral \( \mathrm{PQRS} \) is a rhombus.
ABCD is a quadrilateral in which \( P, Q, R \) and \( S \) are mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and \( \mathrm{DA} \) (see below figure). AC is a diagonal. Show that :(i) \( \mathrm{SR} \| \mathrm{AC} \) and \( \mathrm{SR}=\frac{1}{2} \mathrm{AC} \)(ii) \( \mathrm{PQ}=\mathrm{SR} \)(iii) \( \mathrm{PQRS} \) is a parallelogram."\n
Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
In a parallelogram \( \mathrm{ABCD}, \mathrm{E} \) and \( \mathrm{F} \) are the mid-points of sides \( \mathrm{AB} \) and \( \mathrm{CD} \) respectively (see below figure). Show that the line segments AF and \( \mathrm{EC} \) trisect the diagonal BD."\n
\( A \) and \( B \) are respectively the points on the sides \( P Q \) and \( P R \) of a triangle \( P Q R \) such that \( \mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm} \) and \( \mathrm{PB}=4 \mathrm{~cm} . \) Is \( \mathrm{AB} \| \mathrm{QR} \) ? Give reasons for your answer.
\( P \) and \( Q \) are respectively the mid-points of sides \( \mathrm{AB} \) and \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \) and \( \mathrm{K} \) is the mid-point of \( \mathrm{AP} \), show that(i) \( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) \)(ii) ar \( (\mathrm{RQC})=\frac{3}{8} \) ar \( (\mathrm{ABC}) \)(iii) ar \( (\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC}) \)
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{DC} \) and \( \mathrm{P} \) and \( \mathrm{Q} \) are points on \( \mathrm{AD} \) and \( B C \), respectively such that \( P Q \| D C \). If \( P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm} \) and \( \mathrm{QC}=15 \mathrm{~cm} \), find \( \mathrm{AD} \).
In Fig. 7.48, sides \( \mathrm{AB} \) and \( \mathrm{AC} \) of \( \triangle \mathrm{ABC} \) are extended to points \( \mathrm{P} \) and \( \mathrm{Q} \) respectively. Also, \( \angle \mathrm{PBC}\mathrm{AB} \)."\n
\( \mathrm{O} \) is the point of intersection of the diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \). Through \( \mathrm{O} \), a line segment \( \mathrm{PQ} \) is drawn parallel to \( \mathrm{AB} \) meeting \( \mathrm{AD} \) in \( \mathrm{P} \) and \( \mathrm{BC} \) in \( \mathrm{Q} \). Prove that \( \mathrm{PO}=\mathrm{QO} \).
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{DC}, \mathrm{BD} \) is a diagonal and \( \mathrm{E} \) is the mid-point of \( \mathrm{AD} \). A line is drawn through E parallel to \( \mathrm{AB} \) intersecting \( \mathrm{BC} \) at \( \mathrm{F} \) (see below figure). Show that \( \mathrm{F} \) is the mid-point of \( \mathrm{BC} \)."\n
\( \mathrm{AB} \) and \( \mathrm{CD} \) are respectively the smallest and longest sides of a quadrilateral \( \mathrm{ABCD} \) (see Fig. 7.50). Show that \( \angle A>\angle C \) and \( \angle \mathrm{B}>\angle \mathrm{D} \)."\n
\( \mathrm{D}, \mathrm{E} \) and \( \mathrm{F} \) are respectively the mid-points of the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) of a \( \triangle \mathrm{ABC} \). Show that(i) BDEF is a parallelogram.(ii) \( \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(iii) \( \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \)
In \( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \| \mathrm{DE}, \mathrm{BC}=\mathrm{EF} \) and \( \mathrm{BC} \| EF \). Vertices \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are joined to vertices D, E and F respectively (see below figure).Show that(i) quadrilateral ABED is a parallelogram(ii) quadrilateral \( \mathrm{BEFC} \) is a parallelogram(iii) \( \mathrm{AD} \| \mathrm{CF} \) and \( \mathrm{AD}=\mathrm{CF} \)(iv) quadrilateral ACFD is a parallelogram(v) \( \mathrm{AC}=\mathrm{DF} \)(vi) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF} \)."
In figure below, \( \mathrm{PA}, \mathrm{QB}, \mathrm{RC} \) and \( \mathrm{SD} \) are all perpendiculars to a line \( l, \mathrm{AB}=6 \mathrm{~cm} \), \( \mathrm{BC}=9 \mathrm{~cm}, C D=12 \mathrm{~cm} \) and \( S P=36 \mathrm{~cm} \). Find \( P Q, Q R \) and \( R S \)."
\( \mathrm{D} \) and \( \mathrm{E} \) are points on sides \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively of \( \triangle \mathrm{ABC} \) such that ar \( (\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC}) \). Prove that $DE\|BC$.
Kickstart Your Career
Get certified by completing the course
Get Started