$ P $ and $ Q $ are respectively the mid-points of sides $ \mathrm{AB} $ and $ \mathrm{BC} $ of a triangle $ \mathrm{ABC} $ and $ \mathrm{K} $ is the mid-point of $ \mathrm{AP} $, show that(i) $ \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) $(ii) ar $ (\mathrm{RQC})=\frac{3}{8} $ ar $ (\mathrm{ABC}) $(iii) ar $ (\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC}) $
Given:
\( P \) and \( Q \) are respectively the mid-points of sides \( \mathrm{AB} \) and \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \) and \( \mathrm{K} \) is the mid-point of \( \mathrm{AP} \)
To do:
We have to show that
(i) \( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) \)
(ii) ar \( (\mathrm{RQC})=\frac{3}{8} \) ar \( (\mathrm{ABC}) \)
(iii) ar \( (\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC}) \)
Solution:
We know that,
The median of a triangle divides it into two triangles of equal area.
$PC$ is the median of $\triangle ABC$.
$ar (\triangle BPC) = ar (\triangle APC)$……….(i)
$RC$ is the median of $\triangle APC$.
$ar (\triangle ARC) = \frac{1}{2}ar (\triangle APC)$……….(ii)
$PQ$ is the median of $\triangle BPC$.
This implies,
$ar (\triangle PQC) = \frac{1}{2}ar (\triangle\triangle BPC)$……….(iii)
From (i) and (iii), we get,
$ar (\triangle PQC) = \frac{1}{2} ar (\triangle APC)$……….(iv)
From (ii) and (iv), we get,
$ar (\triangle PQC) = ar (\triangle ARC)$……….(v)
$P$ and $Q$ are the mid-points of $AB$ and $BC$ respectively.
$PQ \| AC$
$PA = \frac{1}{2}AC$
The triangles between the same parallels are equal in area.
This implies,
$ar (\triangle APQ) = ar (\triangle PQC)$……….(vi)
From (v) and (vi), we get,
$ar (\triangle APQ) = ar (\triangle ARC)$……….(vii)
$R$ is the mid-point of $AP$.
$RQ$ is the median of $\triangle APQ$.
This implies,
$ar (\triangle PRQ) = \frac{1}{2}ar (\triangle APQ)$……….(viii)
From (vii) and (viii), we get,
$ar (\triangle PRQ) = \frac{1}{2}ar (\triangle ARC)$
(ii) $PQ$ is the median of $\triangle BPC$
$ar (\triangle PQC) = \frac{1}{2} ar (\triangle BPC)$
$= \frac{1}{2}\times[\frac{1}{2}ar (\triangle ABC)]$
$= \frac{1}{4}ar (\triangle ABC)$……….(ix)
$ar (\triangle PRC) = \frac{1}{2} ar (\triangle APC)$ [From (iv)]
$ar (\triangle PRC) = \frac{1}{2}\times[\frac{1}{2}ar (\triangle ABC)]$
$= \frac{1}{4}ar (\triangle ABC)$……….(x)
Adding (ix) and (x), we get,
$ar (\triangle PQC) + ar (\triangle PRC) =(\frac{1}{4}+\frac{1}{4})ar (\triangle ABC)$
$ar (PQCR) = \frac{1}{2} ar (\triangle ABC)$……….(xi)
Subtracting $ar(\triangle PRQ)$ from both sides,
$ar (PQCR)-ar (\triangle PRQ) = \frac{1}{2}ar (\triangle ABC)-ar (\triangle PRQ)$
$ar (\triangle RQC) = \frac{1}{2}ar (\triangle ABC) - \frac{1}{2} ar (\triangle ARC)$ (Proved)
$ar (\triangle ARC) = \frac{1}{2} ar (\triangle ABC) -\frac{1}{2} \times [\frac{1}{2}ar (\triangle APC)]$
$ar (\triangle RQC) = \frac{1}{2}ar (\triangle ABC)-(\frac{1}{4})ar (\triangle APC)$
$ar (\triangle RQC) = \frac{1}{2}ar (\triangle ABC)-\frac{1}{4} \times [\frac{1}{2}ar (\triangle ABC)]$ (Since $PC$ is the median of $\triangle ABC$)
$ar (\triangle RQC) = \frac{1}{2}ar (\triangle ABC)-\frac{1}{8}ar (\triangle ABC)$
$ar (\triangle RQC) = [(\frac{1}{2}-(\frac{1}{8})]ar (\triangle ABC)$
$ar (\triangle RQC) = \frac{3}{8}ar (\triangle ABC)$
(iii) $ar (\triangle PRQ) = \frac{1}{2}ar (\triangle ARC)$
$2ar (\triangle PRQ) = ar (\triangle ARC)$……………..(xii)
$ar (\triangle PRQ) = \frac{1}{2}ar (\triangle APQ)$ ($RQ$ is the median of APQ$)……….(xiii)
$ar (\triangle APQ) = ar (\triangle PQC)$
From (xiii) and (xiv), we get,
$ar (\triangle PRQ) = \frac{1}{2} ar (\triangle PQC)$……….(xv)
$ar (\triangle BPQ) = ar (\triangle PQC)$ ($PQ$ is the median of \triangle BPC$)……….(xvi)
From (xv) and (xvi), we get,
$ar (\triangle PRQ) =\frac{1}{2}ar (\triangle BPQ)$……….(xvii)
From (xii) and (xvii), we get,
$2\times(\frac{1}{2})ar(\triangle BPQ)= ar (\triangle ARC)$
$ar (\triangle BPQ) = ar (\triangle ARC)$
Hence Proved.
Related Articles \( \mathrm{D}, \mathrm{E} \) and \( \mathrm{F} \) are respectively the mid-points of the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) of a \( \triangle \mathrm{ABC} \). Show that(i) BDEF is a parallelogram.(ii) \( \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(iii) \( \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \)
In figure, \( \mathrm{ABC} \) and \( \mathrm{BDE} \) are two equilateral triangles such that \( \mathrm{D} \) is the mid-point of \( \mathrm{BC} \). If \( \mathrm{AE} \) intersects \( \mathrm{BC} \) at \( \mathrm{F} \), show that(i) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(ii) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE}) \)(iii) \( \operatorname{ar}(\mathrm{ABC})=2 \) ar \( (\mathrm{BEC}) \)(iv) \( \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD}) \)(v) \( \operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED}) \)(vi) \( \operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC}) \)[Hint: Join \( \mathrm{EC} \) and \( \mathrm{AD} \). Show that \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{DE} \| \mathrm{AB} \)
In figure below, \( \mathrm{P} \) is a point in the interior of a parallelogram \( \mathrm{ABCD} \). Show that(i) \( \operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \)(ii) \( \operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD}) \)[Hint: Through \( \mathrm{P} \), draw a line parallel to \( \mathrm{AB} \).]"\n
In figure below, \( \mathrm{ABC} \) is a right triangle right angled at \( \mathrm{A} . \mathrm{BCED}, \mathrm{ACFG} \) and \( \mathrm{ABMN} \) are squares on the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) respectively. Line segment \( \mathrm{AX} \perp \mathrm{DE} \) meets \( \mathrm{BC} \) at Y. Show that:(i) \( \triangle \mathrm{MBC} \cong \triangle \mathrm{ABD} \)(ii) \( \operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{MBC}) \)(iii) \( \operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN}) \)(iv) \( \triangle \mathrm{FCB} \cong \triangle \mathrm{ACE} \)(v) \( \operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\mathrm{FCB}) \)(vi) \( \operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG}) \)(vii) ar \( (\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG}) \)"
In a triangle \( \mathrm{ABC}, \mathrm{E} \) is the mid-point of median AD. Show that \( \operatorname{ar}(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \).
In a $\triangle ABC, P$ and $Q$ are respectively, the mid-points of $AB$ and $BC$ and $R$ is the mid-point of $AP$. Prove that \( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ARC}) \).
In a $\triangle ABC, P$ and $Q$ are respectively, the mid-points of $AB$ and $BC$ and $R$ is the mid-point of $AP$. Prove that \( \operatorname{ar}(\Delta \mathrm{RQC})=\frac{3}{8} \operatorname{ar}(\triangle \mathrm{ABC}) \).
In figure below, $PQRS$ and $ABRS$ are parallelograms and \( \mathrm{X} \) is any point on side \( \mathrm{BR} \). Show that(i) \( \operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}(\mathrm{ABRS}) \)(ii) \( \operatorname{ar}(\mathrm{AXS})=\frac{1}{2} \mathrm{ar}(\mathrm{PQRS}) \)"\n
In figure below, ar \( (\mathrm{DRC})= \) ar \( (\mathrm{DPC}) \) and ar \( (\mathrm{BDP})=\operatorname{ar}(\mathrm{ARC}) \). Show that both the quadrilaterals \( \mathrm{ABCD} \) and \( \mathrm{DCPR} \) are trapeziums."\n
\( \mathrm{D} \) and \( \mathrm{E} \) are points on sides \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively of \( \triangle \mathrm{ABC} \) such that ar \( (\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC}) \). Prove that $DE\|BC$.
In figure below, $D$ and \( \mathrm{E} \) are two points on \( \mathrm{BC} \) such that \( \mathrm{BD}=\mathrm{DE}=\mathrm{EC} \). Show that \( \operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC}) \)."\n
If E,F,G and \( \mathrm{H} \) are respectively the mid-points of the sides of a parallelogram \( \mathrm{ABCD} \), show that \( \operatorname{ar}(\mathrm{EFGH})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \)
Diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a quadrilateral \( \mathrm{ABCD} \) intersect each other at \( \mathrm{P} \). Show that ar \( (\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC}) \).[Hint: From \( \mathrm{A} \) and \( \mathrm{C} \), draw perpendiculars to \( \mathrm{BD} \).]
\( \mathrm{XY} \) is a line parallel to side \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \). If \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{CF} \| \mathrm{AB} \) meet \( \mathrm{XY} \) at \( \mathrm{E} \) and \( F \) respectively, show that \( \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF}) \).
In figure below, ABCDE is a pentagon. A line through \( \mathrm{B} \) parallel to \( \mathrm{AC} \) meets \( \mathrm{DC} \) produced at F. Show that(i) \( \operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF}) \)(ii) \( \operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE}) \)"\n
Kickstart Your Career
Get certified by completing the course
Get Started