$ \mathrm{ABCD} $ is a rectangle and $ \mathrm{P}, \mathrm{Q}, \mathrm{R} $ and $ \mathrm{S} $ are mid-points of the sides $ \mathrm{AB}, \mathrm{BC}, \mathrm{CD} $ and $ \mathrm{DA} $ respectively. Show that the quadrilateral $ \mathrm{PQRS} $ is a rhombus.
Given:
\( \mathrm{ABCD} \) is a rectangle and \( \mathrm{P}, \mathrm{Q}, \mathrm{R} \) and \( \mathrm{S} \) are mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and \( \mathrm{DA} \) respectively.
To do: We have to show that the quadrilateral \( \mathrm{PQRS} \) is a rhombus. Solution:
$\angle A=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$
$\mathrm{AD}=\mathrm{BC}$ and $\mathrm{AB}=\mathrm{CD}$
$P, Q, R$ and $S$ are mid-points of $A B, B C, C D$ and $D A$ respectively.
This implies,
$P Q \| A C$
$P Q=\frac{1}{2} \mathrm{AC}$
$R S \| A C$
$R S=\frac{1}{2} \mathrm{AC}$
$\mathrm{PQ}=\mathrm{SR}$
In $\triangle \mathrm{ASP}$ and $\triangle \mathrm{BQP}$
$\mathrm{AP}=\mathrm{BP}$
$\mathrm{AS}=\mathrm{BQ}$
$\angle A=\angle B=90^o$
Therefore, by SAS congruency, we get,
$\triangle \mathrm{ASP} \cong \triangle \mathrm{BQP}$
This implies,
$\mathrm{SP}=\mathrm{PQ}$ (CPCT)
In $\triangle \mathrm{RDS}$ and $\triangle \mathrm{RCQ}$,
$\mathrm{SD}=\mathrm{CQ}$
$\mathrm{DR}=\mathrm{CR}$
$\angle C=\angle D=90^o$
Therefore, by SAS congruency, we get,
$\triangle \mathrm{RDS} \cong \triangle \mathrm{RCQ}$
This implies,
$S R=R Q$ (CPCT)
Here,
$PQ=QR=RS=SP$
Therefore, the quadrilateral $PQRS$ is a rhombus.
Related Articles \( \mathrm{ABCD} \) is a rhombus and \( \mathrm{P}, \mathrm{Q}, \mathrm{R} \) and \( \mathrm{S} \) are the mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and DA respectively. Show that the quadrilateral \( \mathrm{PQRS} \) is a rectangle.
ABCD is a quadrilateral in which \( P, Q, R \) and \( S \) are mid-points of the sides \( \mathrm{AB}, \mathrm{BC}, \mathrm{CD} \) and \( \mathrm{DA} \) (see below figure). AC is a diagonal. Show that :(i) \( \mathrm{SR} \| \mathrm{AC} \) and \( \mathrm{SR}=\frac{1}{2} \mathrm{AC} \)(ii) \( \mathrm{PQ}=\mathrm{SR} \)(iii) \( \mathrm{PQRS} \) is a parallelogram."\n
Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
\( A \) and \( B \) are respectively the points on the sides \( P Q \) and \( P R \) of a triangle \( P Q R \) such that \( \mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm} \) and \( \mathrm{PB}=4 \mathrm{~cm} . \) Is \( \mathrm{AB} \| \mathrm{QR} \) ? Give reasons for your answer.
In Fig. 7.48, sides \( \mathrm{AB} \) and \( \mathrm{AC} \) of \( \triangle \mathrm{ABC} \) are extended to points \( \mathrm{P} \) and \( \mathrm{Q} \) respectively. Also, \( \angle \mathrm{PBC}\mathrm{AB} \)."\n
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{DC} \) and \( \mathrm{P} \) and \( \mathrm{Q} \) are points on \( \mathrm{AD} \) and \( B C \), respectively such that \( P Q \| D C \). If \( P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm} \) and \( \mathrm{QC}=15 \mathrm{~cm} \), find \( \mathrm{AD} \).
\( P \) and \( Q \) are respectively the mid-points of sides \( \mathrm{AB} \) and \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \) and \( \mathrm{K} \) is the mid-point of \( \mathrm{AP} \), show that(i) \( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) \)(ii) ar \( (\mathrm{RQC})=\frac{3}{8} \) ar \( (\mathrm{ABC}) \)(iii) ar \( (\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC}) \)
In a parallelogram \( \mathrm{ABCD}, \mathrm{E} \) and \( \mathrm{F} \) are the mid-points of sides \( \mathrm{AB} \) and \( \mathrm{CD} \) respectively (see below figure). Show that the line segments AF and \( \mathrm{EC} \) trisect the diagonal BD."\n
\( \mathrm{O} \) is the point of intersection of the diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \). Through \( \mathrm{O} \), a line segment \( \mathrm{PQ} \) is drawn parallel to \( \mathrm{AB} \) meeting \( \mathrm{AD} \) in \( \mathrm{P} \) and \( \mathrm{BC} \) in \( \mathrm{Q} \). Prove that \( \mathrm{PO}=\mathrm{QO} \).
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{DC}, \mathrm{BD} \) is a diagonal and \( \mathrm{E} \) is the mid-point of \( \mathrm{AD} \). A line is drawn through E parallel to \( \mathrm{AB} \) intersecting \( \mathrm{BC} \) at \( \mathrm{F} \) (see below figure). Show that \( \mathrm{F} \) is the mid-point of \( \mathrm{BC} \)."\n
In \( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \| \mathrm{DE}, \mathrm{BC}=\mathrm{EF} \) and \( \mathrm{BC} \| EF \). Vertices \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are joined to vertices D, E and F respectively (see below figure).Show that(i) quadrilateral ABED is a parallelogram(ii) quadrilateral \( \mathrm{BEFC} \) is a parallelogram(iii) \( \mathrm{AD} \| \mathrm{CF} \) and \( \mathrm{AD}=\mathrm{CF} \)(iv) quadrilateral ACFD is a parallelogram(v) \( \mathrm{AC}=\mathrm{DF} \)(vi) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF} \)."
In figure below, \( \mathrm{PA}, \mathrm{QB}, \mathrm{RC} \) and \( \mathrm{SD} \) are all perpendiculars to a line \( l, \mathrm{AB}=6 \mathrm{~cm} \), \( \mathrm{BC}=9 \mathrm{~cm}, C D=12 \mathrm{~cm} \) and \( S P=36 \mathrm{~cm} \). Find \( P Q, Q R \) and \( R S \)."
\( \mathrm{D} \) and \( \mathrm{E} \) are points on sides \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively of \( \triangle \mathrm{ABC} \) such that ar \( (\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC}) \). Prove that $DE\|BC$.
\( \mathrm{D}, \mathrm{E} \) and \( \mathrm{F} \) are respectively the mid-points of the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) of a \( \triangle \mathrm{ABC} \). Show that(i) BDEF is a parallelogram.(ii) \( \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(iii) \( \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \)
\( \mathrm{AB} \) and \( \mathrm{CD} \) are respectively the smallest and longest sides of a quadrilateral \( \mathrm{ABCD} \) (see Fig. 7.50). Show that \( \angle A>\angle C \) and \( \angle \mathrm{B}>\angle \mathrm{D} \)."\n
Kickstart Your Career
Get certified by completing the course
Get Started