$ \mathrm{D} $ and $ \mathrm{E} $ are points on sides $ \mathrm{AB} $ and $ \mathrm{AC} $ respectively of $ \triangle \mathrm{ABC} $ such that ar $ (\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC}) $. Prove that $DE\|BC$.
Given:
\( \mathrm{D} \) and \( \mathrm{E} \) are points on sides \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively of \( \triangle \mathrm{ABC} \) such that ar \( (\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC}) \).
To do:
We have to prove that $DE\|BC$.
Solution:
ar \( (\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC}) \)
This implies,
$\triangle DBC$ and $\triangle EBC$ are equal in area and have the same base $BC$.
Therefore,
$\triangle DBC$ and $\triangle EBC$ lie between the same parallel lines.
This implies,
$DE \| BC$
Hence proved.
Related Articles In figure below, $D$ and \( \mathrm{E} \) are two points on \( \mathrm{BC} \) such that \( \mathrm{BD}=\mathrm{DE}=\mathrm{EC} \). Show that \( \operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC}) \)."\n
\( \mathrm{D}, \mathrm{E} \) and \( \mathrm{F} \) are respectively the mid-points of the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) of a \( \triangle \mathrm{ABC} \). Show that(i) BDEF is a parallelogram.(ii) \( \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(iii) \( \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \)
In figure, \( \mathrm{ABC} \) and \( \mathrm{BDE} \) are two equilateral triangles such that \( \mathrm{D} \) is the mid-point of \( \mathrm{BC} \). If \( \mathrm{AE} \) intersects \( \mathrm{BC} \) at \( \mathrm{F} \), show that(i) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(ii) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE}) \)(iii) \( \operatorname{ar}(\mathrm{ABC})=2 \) ar \( (\mathrm{BEC}) \)(iv) \( \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD}) \)(v) \( \operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED}) \)(vi) \( \operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC}) \)[Hint: Join \( \mathrm{EC} \) and \( \mathrm{AD} \). Show that \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{DE} \| \mathrm{AB} \)
In figure below, \( \mathrm{ABC} \) is a right triangle right angled at \( \mathrm{A} . \mathrm{BCED}, \mathrm{ACFG} \) and \( \mathrm{ABMN} \) are squares on the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) respectively. Line segment \( \mathrm{AX} \perp \mathrm{DE} \) meets \( \mathrm{BC} \) at Y. Show that:(i) \( \triangle \mathrm{MBC} \cong \triangle \mathrm{ABD} \)(ii) \( \operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{MBC}) \)(iii) \( \operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN}) \)(iv) \( \triangle \mathrm{FCB} \cong \triangle \mathrm{ACE} \)(v) \( \operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\mathrm{FCB}) \)(vi) \( \operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG}) \)(vii) ar \( (\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG}) \)"
\( P \) and \( Q \) are respectively the mid-points of sides \( \mathrm{AB} \) and \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \) and \( \mathrm{K} \) is the mid-point of \( \mathrm{AP} \), show that(i) \( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) \)(ii) ar \( (\mathrm{RQC})=\frac{3}{8} \) ar \( (\mathrm{ABC}) \)(iii) ar \( (\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC}) \)
\( \mathrm{XY} \) is a line parallel to side \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \). If \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{CF} \| \mathrm{AB} \) meet \( \mathrm{XY} \) at \( \mathrm{E} \) and \( F \) respectively, show that \( \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF}) \).
Diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a trapezium \( \mathrm{ABCD} \) with \( \mathrm{AB} \| \mathrm{DC} \) intersect each other at \( \mathrm{O} \). Prove that ar \( (\mathrm{AOD})=\operatorname{ar}(\mathrm{BOC}) \).
\( \mathrm{ABCD} \) is a trapezium with \( \mathrm{AB} \| \mathrm{DC} \). A line parallel to \( \mathrm{AC} \) intersects \( \mathrm{AB} \) at \( \mathrm{X} \) and \( \mathrm{BC} \) at Y. Prove that ar \( (\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY}) \).[Hint: Join CX.]
In figure below, diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of quadrilateral \( \mathrm{ABCD} \) intersect at \( \mathrm{O} \) such that \( \mathrm{OB}=\mathrm{OD} \).If \( \mathrm{AB}=\mathrm{CD} \), then show that:(i) \( \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB}) \)(ii) \( \operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB}) \)(iii) DA\| \( \mathrm{CB} \) or \( \mathrm{ABCD} \) is a parallelogram.[Hint : From D and B, draw perpendiculars to AC.]"\n
In figure below, \( \mathrm{ABC} \) and \( \mathrm{ABD} \) are two triangles on the same base \( \mathrm{AB} \). If line- segment \( \mathrm{CD} \) is bisected by \( \mathrm{AB} \) at \( \mathrm{O} \), show that \( \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD}) \)."\n
In a triangle \( \mathrm{ABC}, \mathrm{E} \) is the mid-point of median AD. Show that \( \operatorname{ar}(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \).
Diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a quadrilateral \( \mathrm{ABCD} \) intersect each other at \( \mathrm{P} \). Show that ar \( (\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC}) \).[Hint: From \( \mathrm{A} \) and \( \mathrm{C} \), draw perpendiculars to \( \mathrm{BD} \).]
In figure below, $E$ is any point on median \( \mathrm{AD} \) of a \( \triangle \mathrm{ABC} \). Show that ar \( (\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE}) \)."\n
In Fig. 7.48, sides \( \mathrm{AB} \) and \( \mathrm{AC} \) of \( \triangle \mathrm{ABC} \) are extended to points \( \mathrm{P} \) and \( \mathrm{Q} \) respectively. Also, \( \angle \mathrm{PBC}\mathrm{AB} \)."\n
If E,F,G and \( \mathrm{H} \) are respectively the mid-points of the sides of a parallelogram \( \mathrm{ABCD} \), show that \( \operatorname{ar}(\mathrm{EFGH})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \)
Kickstart Your Career
Get certified by completing the course
Get Started