$ \mathrm{D}, \mathrm{E} $ and $ \mathrm{F} $ are respectively the mid-points of the sides $ \mathrm{BC}, \mathrm{CA} $ and $ \mathrm{AB} $ of a $ \triangle \mathrm{ABC} $. Show that(i) BDEF is a parallelogram.(ii) $ \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) $(iii) $ \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) $
Given:
\( \mathrm{D}, \mathrm{E} \) and \( \mathrm{F} \) are respectively the mid-points of the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) of a \( \triangle \mathrm{ABC} \).
To do:
We have to show that
(i) BDEF is a parallelogram. (ii) \( \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \) (iii) \( \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \)
Solution:
In $\triangle ABC$,
By mid point theorem,
$EF \| BC$
$EF = \frac{1}{2}BC$
$BD = \frac{1}{2}BC$ ($D$ is the mid point of $BC$)
This implies,
$BD = EF$
Similarly,
$BF=DE$
$BF$ and $DE$ are parallel.
Here,
The pair of opposite sides are equal in length and parallel to each other.
Therefore,
$BDEF$ is a parallelogram.
(ii) Similarly, we can prove that both $DCEF$ and $AFDE$ are also parallelograms.
The diagonal of a parallelogram divides it into two triangles of equal area.
This implies,
In parallelogram $BDEF$,
$ar(\triangle BFD) = ar(\triangle DEF)$..........(i)
In parallelogram $DCEF$
$ar(\triangle DCE) = ar(\triangle DEF)$..........(ii)
In parallelogram $AFDE$,
$ar(\triangle AFE) = ar(\triangle DEF)$...........(iii)
From (i), (ii) and (iii), we get,
$ar(\triangle BFD) = ar(\triangle AFE) = ar(\triangle CDE) = ar(\triangle DEF)$
This implies,
$ar(\triangle BFD) +ar(\triangle AFE) +ar(\triangle CDE) +ar(\triangle DEF) = ar(\triangle ABC)$
$4 ar(\triangle DEF) = ar(\triangle ABC)$
$ar(\triangle DEF) = \frac{1}{4}ar(\triangle ABC)$
(iii) Area of parallelogram $BDEF = ar(\triangle DEF) +ar(\triangle BDE)$
$ar(BDEF) = ar(\triangle DEF) +ar(\triangle DEF)$
$ar(BDEF) = 2\times ar(\triangle DEF)$
$ar(BDEF) = 2\times \frac{1}{4}ar(\triangle ABC)$
$ar(BDEF) = \frac{1}{2}ar(\triangle ABC)$
Related Articles In figure, \( \mathrm{ABC} \) and \( \mathrm{BDE} \) are two equilateral triangles such that \( \mathrm{D} \) is the mid-point of \( \mathrm{BC} \). If \( \mathrm{AE} \) intersects \( \mathrm{BC} \) at \( \mathrm{F} \), show that(i) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(ii) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE}) \)(iii) \( \operatorname{ar}(\mathrm{ABC})=2 \) ar \( (\mathrm{BEC}) \)(iv) \( \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD}) \)(v) \( \operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED}) \)(vi) \( \operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC}) \)[Hint: Join \( \mathrm{EC} \) and \( \mathrm{AD} \). Show that \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{DE} \| \mathrm{AB} \)
\( P \) and \( Q \) are respectively the mid-points of sides \( \mathrm{AB} \) and \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \) and \( \mathrm{K} \) is the mid-point of \( \mathrm{AP} \), show that(i) \( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) \)(ii) ar \( (\mathrm{RQC})=\frac{3}{8} \) ar \( (\mathrm{ABC}) \)(iii) ar \( (\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC}) \)
In a triangle \( \mathrm{ABC}, \mathrm{E} \) is the mid-point of median AD. Show that \( \operatorname{ar}(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \).
In figure below, \( \mathrm{ABC} \) is a right triangle right angled at \( \mathrm{A} . \mathrm{BCED}, \mathrm{ACFG} \) and \( \mathrm{ABMN} \) are squares on the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) respectively. Line segment \( \mathrm{AX} \perp \mathrm{DE} \) meets \( \mathrm{BC} \) at Y. Show that:(i) \( \triangle \mathrm{MBC} \cong \triangle \mathrm{ABD} \)(ii) \( \operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{MBC}) \)(iii) \( \operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN}) \)(iv) \( \triangle \mathrm{FCB} \cong \triangle \mathrm{ACE} \)(v) \( \operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\mathrm{FCB}) \)(vi) \( \operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG}) \)(vii) ar \( (\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG}) \)"
In figure below, \( \mathrm{P} \) is a point in the interior of a parallelogram \( \mathrm{ABCD} \). Show that(i) \( \operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \)(ii) \( \operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD}) \)[Hint: Through \( \mathrm{P} \), draw a line parallel to \( \mathrm{AB} \).]"\n
\( \mathrm{D} \) and \( \mathrm{E} \) are points on sides \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively of \( \triangle \mathrm{ABC} \) such that ar \( (\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC}) \). Prove that $DE\|BC$.
If E,F,G and \( \mathrm{H} \) are respectively the mid-points of the sides of a parallelogram \( \mathrm{ABCD} \), show that \( \operatorname{ar}(\mathrm{EFGH})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \)
In figure below, $D$ and \( \mathrm{E} \) are two points on \( \mathrm{BC} \) such that \( \mathrm{BD}=\mathrm{DE}=\mathrm{EC} \). Show that \( \operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC}) \)."\n
\( \mathrm{XY} \) is a line parallel to side \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \). If \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{CF} \| \mathrm{AB} \) meet \( \mathrm{XY} \) at \( \mathrm{E} \) and \( F \) respectively, show that \( \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF}) \).
In figure below, $PQRS$ and $ABRS$ are parallelograms and \( \mathrm{X} \) is any point on side \( \mathrm{BR} \). Show that(i) \( \operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}(\mathrm{ABRS}) \)(ii) \( \operatorname{ar}(\mathrm{AXS})=\frac{1}{2} \mathrm{ar}(\mathrm{PQRS}) \)"\n
In figure below, ABCDE is a pentagon. A line through \( \mathrm{B} \) parallel to \( \mathrm{AC} \) meets \( \mathrm{DC} \) produced at F. Show that(i) \( \operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF}) \)(ii) \( \operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE}) \)"\n
In figure below, \( \mathrm{ABC} \) and \( \mathrm{ABD} \) are two triangles on the same base \( \mathrm{AB} \). If line- segment \( \mathrm{CD} \) is bisected by \( \mathrm{AB} \) at \( \mathrm{O} \), show that \( \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD}) \)."\n
In figure below, diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of quadrilateral \( \mathrm{ABCD} \) intersect at \( \mathrm{O} \) such that \( \mathrm{OB}=\mathrm{OD} \).If \( \mathrm{AB}=\mathrm{CD} \), then show that:(i) \( \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB}) \)(ii) \( \operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB}) \)(iii) DA\| \( \mathrm{CB} \) or \( \mathrm{ABCD} \) is a parallelogram.[Hint : From D and B, draw perpendiculars to AC.]"\n
Diagonals \( \mathrm{AC} \) and \( \mathrm{BD} \) of a quadrilateral \( \mathrm{ABCD} \) intersect each other at \( \mathrm{P} \). Show that ar \( (\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{APD}) \times \operatorname{ar}(\mathrm{BPC}) \).[Hint: From \( \mathrm{A} \) and \( \mathrm{C} \), draw perpendiculars to \( \mathrm{BD} \).]
Choose the correct answer from the given four options:If \( \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}, \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm} \) and \( \mathrm{BC}=15 \mathrm{~cm} \), then \( \mathrm{PR} \) is equal to(A) \( 10 \mathrm{~cm} \)(B) \( 12 \mathrm{~cm} \)(C) \( \frac{20}{3} \mathrm{~cm} \)(D) \( 8 \mathrm{~cm} \)
Kickstart Your Career
Get certified by completing the course
Get Started