In $\triangle PQR$, right angled at $Q, PQ = 4\ cm$ and $RQ = 3\ cm$. Find the values of $sin\ P, sin\ R, sec\ P$ and $sec\ R$.
Given:
In $\triangle PQR$, right angled at $Q, PQ = 4\ cm$ and $RQ = 3\ cm$.
To do:
We have to find the values of $sin\ P, sin\ R, sec\ P$ and $sec\ R$.
Solution:

We know that,
In a right-angled triangle $PQR$ with right angle at $Q$,
By Pythagoras theorem,
$PR^2=PQ^2+QR^2$
By trigonometric ratios definitions,
$sin\ P=\frac{Opposite}{Hypotenuse}=\frac{QR}{PR}$
$sin\ R=\frac{Opposite}{Hypotenuse}=\frac{PQ}{PR}$
$sec\ P=\frac{Hypotenuse}{Adjacent}=\frac{PR}{PQ}$
$sec\ R=\frac{Hypotenuse}{Adjacent}=\frac{PR}{QR}$
Here, $ PQ = 4\ cm$ and $RQ = 3\ cm$.
$PR^2=PQ^2+QR^2$
$\Rightarrow PR^2=(4)^2+(3)^2$
$\Rightarrow PR^2=16+9$
$\Rightarrow PR=\sqrt{25}=5$
Therefore,
$sin\ P=\frac{QR}{PR}=\frac{3}{5}$
$sin\ R=\frac{PQ}{PR}=\frac{4}{5}$
$sec\ P=\frac{PR}{PQ}=\frac{5}{4}$
$sec\ R=\frac{PR}{QR}=\frac{5}{3}$
- Related Articles
- In $ΔPQR$, right-angled at $Q, PR + QR = 25\ cm$ and $PQ = 5\ cm$. Determine the values of $sin\ P, cos\ P$ and $tan\ P$.
- In \( \Delta P Q R \), right-angled at \( Q, P Q=3 \mathrm{~cm} \) and \( P R=6 \mathrm{~cm} \). Determine \( \angle P \) and \( \angle R \).
- $PQR$ is a triangle, right-angled at $P$. If $PQ=10\ cm$ and $PR=24\ cm$, find $QR$.
- In figure below, \( \mathrm{PQR} \) is a right triangle right angled at \( \mathrm{Q} \) and \( \mathrm{QS} \perp \mathrm{PR} \). If \( P Q=6 \mathrm{~cm} \) and \( P S=4 \mathrm{~cm} \), find \( Q S, R S \) and \( Q R \)."
- In $\triangle P Q R$, if $PQ=10\ cm$, $QR=8\ cm$ and $PR=6\ cm$ then find $\angle R=?$
- Construct a triangle \( P Q R \) with side \( Q R=7 \mathrm{~cm}, P Q=6 \mathrm{~cm} \) and \( \angle P Q R=60^{\circ} \). Then construct another triangle whose sides are \( 3 / 5 \) of the corresponding sides of \( \triangle P Q R \).
- PQR is a triangle, right-angled at P. If PQ=10cm and PR=24 , find QR
- In the figure, \( O Q: P Q=3: 4 \) and perimeter of \( \Delta P O Q=60 \mathrm{~cm} \). Determine \( P Q, Q R \) and \( O P \)."\n
- If $p=-2,\ q=-1$ and $r=3$, find the value of $p-q-r$.
- In triangle PQR, right angled at Q, PR$+$QR=25cm and PQ=5cm.Determine the values of sinP, cosP, tanP.
- In triangle PQR $\angle P = (x-1) $, $\angle Q = 4x $ and $\angle R = (2x -3 )$. Find the values of three angles.
- The points $A( 4,\ 7) ,\ B( p,\ 3)$ and $C( 7,\ 3)$ are the vertices of a right triangle, right-angled at B, Find the values of $p$.
- A triangle \( P Q R \) is drawn to circumscribe a circle of radius \( 8 \mathrm{~cm} \) such that the segments \( Q T \) and \( T R \), into which \( Q R \) is divided by the point of contact \( T \), are of lengths \( 14 \mathrm{~cm} \) and \( 16 \mathrm{~cm} \) respectively. If area of \( \Delta P Q R \) is \( 336 \mathrm{~cm}^{2} \), find the sides \( P Q \) and \( P R \).
- Find the following product.\( \left(\frac{4}{3} p q^{2}\right) \times\left(\frac{-1}{4} p^{2} r\right) \times\left(16 p^{2} q^{2} r^{2}\right) \)
- \( A \) and \( B \) are respectively the points on the sides \( P Q \) and \( P R \) of a triangle \( P Q R \) such that \( \mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm} \) and \( \mathrm{PB}=4 \mathrm{~cm} . \) Is \( \mathrm{AB} \| \mathrm{QR} \) ? Give reasons for your answer.
Kickstart Your Career
Get certified by completing the course
Get Started