In figure below, $ \mathrm{PQR} $ is a right triangle right angled at $ \mathrm{Q} $ and $ \mathrm{QS} \perp \mathrm{PR} $. If $ P Q=6 \mathrm{~cm} $ and $ P S=4 \mathrm{~cm} $, find $ Q S, R S $ and $ Q R $. "
Given:
\( \mathrm{PQR} \) is a right triangle right angled at \( \mathrm{Q} \) and \( \mathrm{QS} \perp \mathrm{PR} \).
\( P Q=6 \mathrm{~cm} \) and \( P S=4 \mathrm{~cm} \).
To do:
We have to find \( Q S, R S \) and \( Q R \).
Solution:
In $\triangle S Q \mathrm{P}$ and $\triangle \mathrm{SRQ}$,
$\angle P S Q =\angle R S Q=90^o$
$\angle S P Q =\angle S Q R=90^{\circ}-\angle R$
Therefore, by AA similarity,
$\Delta S Q P \sim \Delta S R Q$
This implies,
$\frac{S Q}{P S}=\frac{S R}{SQ}$
$S Q^{2}=P S \times S R$.......(i)
In right angled triangle $P S Q$, by Pythagoras theorem,
$P Q^{2} =P S^{2}+Q S^{2}$
$(6)^{2}=(4)^{2}+Q S^{2}$
$36 =16+Q S^{2}$
$Q S^{2}=36-16$
$=20$
$QS=\sqrt{20}$
$=2 \sqrt{5} \mathrm{~cm}$ Substituting the value of $Q S$ in (i), we get,
$(2 \sqrt{5})^{2}=4 \times S R$
$S R =\frac{4 \times 5}{4}$
$=5 \mathrm{~cm}$
In right angled triangle $Q S R$,
$Q R^{2} =Q S^{2}+S R^{2}$
$Q R^{2}=(2 \sqrt{5})^{2}+(5)^{2}$
$Q R^{2}=20+25$
$Q R=\sqrt{45}$
$=3 \sqrt{5} \mathrm{~cm}$
Hence, $Q S=2 \sqrt{5} \mathrm{~cm}, R S=5 \mathrm{~cm}$ and $Q R=3 \sqrt{5} \mathrm{~cm}$
Related Articles In \( \Delta P Q R \), right-angled at \( Q, P Q=3 \mathrm{~cm} \) and \( P R=6 \mathrm{~cm} \). Determine \( \angle P \) and \( \angle R \).
In figure below, \( \mathrm{PA}, \mathrm{QB}, \mathrm{RC} \) and \( \mathrm{SD} \) are all perpendiculars to a line \( l, \mathrm{AB}=6 \mathrm{~cm} \), \( \mathrm{BC}=9 \mathrm{~cm}, C D=12 \mathrm{~cm} \) and \( S P=36 \mathrm{~cm} \). Find \( P Q, Q R \) and \( R S \)."
Choose the correct answer from the given four options:If \( S \) is a point on side \( P Q \) of a \( \triangle P Q R \) such that \( P S=Q S=R S \), then(A) \( \mathrm{PR}, \mathrm{QR}=\mathrm{RS}^{2} \)(B) \( \mathrm{QS}^{2}+\mathrm{RS}^{2}=\mathrm{QR}^{2} \)(C) \( \mathrm{PR}^{2}+\mathrm{QR}^{2}=\mathrm{PQ}^{2} \)(D) \( \mathrm{PS}^{2}+\mathrm{RS}^{2}=\mathrm{PR}^{2} \)
\( A \) and \( B \) are respectively the points on the sides \( P Q \) and \( P R \) of a triangle \( P Q R \) such that \( \mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm} \) and \( \mathrm{PB}=4 \mathrm{~cm} . \) Is \( \mathrm{AB} \| \mathrm{QR} \) ? Give reasons for your answer.
Construct a triangle \( \mathrm{PQR} \) in which \( \mathrm{QR}=6 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ} \) and \( \mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm} \).
10. Construct \( \triangle \mathrm{PQR} \) with \( \mathrm{PQ}=4.5 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ} \) and \( \mathrm{PR}=4.5 \mathrm{~cm} . \) Measure \( \angle \mathrm{Q} \) and \( \angle \mathrm{R} \). What type of a triangle is it?
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{DC} \) and \( \mathrm{P} \) and \( \mathrm{Q} \) are points on \( \mathrm{AD} \) and \( B C \), respectively such that \( P Q \| D C \). If \( P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm} \) and \( \mathrm{QC}=15 \mathrm{~cm} \), find \( \mathrm{AD} \).
Construct a triangle \( P Q R \) with side \( Q R=7 \mathrm{~cm}, P Q=6 \mathrm{~cm} \) and \( \angle P Q R=60^{\circ} \). Then construct another triangle whose sides are \( 3 / 5 \) of the corresponding sides of \( \triangle P Q R \).
In \( \triangle \mathrm{PQR}, \angle Q=90^{\circ} \) and \( \mathrm{QM} \) is a median. If \( \mathrm{PQ}=20 \) and \( Q R=21 \), find \( Q M \).
In \( \triangle \mathrm{PQR}, \quad \angle \mathrm{P}=\angle \mathrm{Q}+\angle \mathrm{R}, \mathrm{PQ}=7 \) and \( \mathrm{QR}=25 \). Find the perimeter of \( \triangle \mathrm{PQR} \).
In the figure, \( O Q: P Q=3: 4 \) and perimeter of \( \Delta P O Q=60 \mathrm{~cm} \). Determine \( P Q, Q R \) and \( O P \)."\n
A triangle \( P Q R \) is drawn to circumscribe a circle of radius \( 8 \mathrm{~cm} \) such that the segments \( Q T \) and \( T R \), into which \( Q R \) is divided by the point of contact \( T \), are of lengths \( 14 \mathrm{~cm} \) and \( 16 \mathrm{~cm} \) respectively. If area of \( \Delta P Q R \) is \( 336 \mathrm{~cm}^{2} \), find the sides \( P Q \) and \( P R \).
In figure below, \( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{B} \) and \( \mathrm{BD} \perp \mathrm{AC} \). If \( \mathrm{AD}=4 \mathrm{~cm} \), and \( C D=5 \mathrm{~cm} \), find \( B D \) and \( A B \)."
In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
In figure below, \( P Q R S \) is a square of side \( 4 \mathrm{~cm} \). Find the area of the shaded square."\n
Kickstart Your Career
Get certified by completing the course
Get Started