In $ \Delta P Q R $, right-angled at $ Q, P Q=3 \mathrm{~cm} $ and $ P R=6 \mathrm{~cm} $. Determine $ \angle P $ and $ \angle R $.
Given:
In \( \Delta P Q R \), right-angled at \( Q, P Q=3 \mathrm{~cm} \) and \( P R=6 \mathrm{~cm} \).
To do:
We have to determine \( \angle P \) and \( \angle R \).
Solution:

In \( \Delta P Q R \),
$sin\ R=\frac{PQ}{PR}$
$=\frac{3}{6}$
$=\frac{1}{2}$
$=\sin 30^{\circ}$ (Since $\sin 30^{\circ}=\frac{1}{2}$)
$\Rightarrow R=30^{\circ}$
We know that sum of the angles in a triangle is $180^o$.
Therefore,
$\angle P+\angle Q+\angle R=180^o$
$\angle P+90^o+30^o=180^o$
$\angle P=180^o-120^o$
$\angle P=60^o$
Hence, $\angle P=60^o$ and $\angle R=30^o$.
- Related Articles
- In the figure, \( O Q: P Q=3: 4 \) and perimeter of \( \Delta P O Q=60 \mathrm{~cm} \). Determine \( P Q, Q R \) and \( O P \)."\n
- Construct a triangle \( P Q R \) with side \( Q R=7 \mathrm{~cm}, P Q=6 \mathrm{~cm} \) and \( \angle P Q R=60^{\circ} \). Then construct another triangle whose sides are \( 3 / 5 \) of the corresponding sides of \( \triangle P Q R \).
- In figure below, \( \mathrm{PQR} \) is a right triangle right angled at \( \mathrm{Q} \) and \( \mathrm{QS} \perp \mathrm{PR} \). If \( P Q=6 \mathrm{~cm} \) and \( P S=4 \mathrm{~cm} \), find \( Q S, R S \) and \( Q R \)."
- In the adjoining figure, $P R=S Q$ and $S R=P Q$.a) Prove that $\angle P=\angle S$.b) $\Delta SOQ \cong \Delta POR$."\n
- In a triangle \( P Q R, N \) is a point on \( P R \) such that \( Q N \perp P R \). If \( P N \). \( N R=Q^{2} \), prove that \( \angle \mathrm{PQR}=90^{\circ} \).
- A triangle \( P Q R \) is drawn to circumscribe a circle of radius \( 8 \mathrm{~cm} \) such that the segments \( Q T \) and \( T R \), into which \( Q R \) is divided by the point of contact \( T \), are of lengths \( 14 \mathrm{~cm} \) and \( 16 \mathrm{~cm} \) respectively. If area of \( \Delta P Q R \) is \( 336 \mathrm{~cm}^{2} \), find the sides \( P Q \) and \( P R \).
- If $p,\ q,\ r$ are in A.P., then show that $p^2( p+r),\ q^2( r+p),\ r^2( p+q)$ are also in A.P.
- Simplify the following.a) \( (l^{2}-m^{2})(2 l+m)-m^{3} \)b) \( (p+q+r)(p-q+r)+p q-q r \)
- In $\triangle PQR$, right angled at $Q, PQ = 4\ cm$ and $RQ = 3\ cm$. Find the values of $sin\ P, sin\ R, sec\ P$ and $sec\ R$.
- In $\triangle P Q R$, if $PQ=10\ cm$, $QR=8\ cm$ and $PR=6\ cm$ then find $\angle R=?$
- If $p=-2,\ q=-1$ and $r=3$, find the value of $p-q-r$.
- If p,q and r are in proportion and q =17, r=289, find p.
- In figure below, \( \mathrm{PA}, \mathrm{QB}, \mathrm{RC} \) and \( \mathrm{SD} \) are all perpendiculars to a line \( l, \mathrm{AB}=6 \mathrm{~cm} \), \( \mathrm{BC}=9 \mathrm{~cm}, C D=12 \mathrm{~cm} \) and \( S P=36 \mathrm{~cm} \). Find \( P Q, Q R \) and \( R S \)."
- \( A \) and \( B \) are respectively the points on the sides \( P Q \) and \( P R \) of a triangle \( P Q R \) such that \( \mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm} \) and \( \mathrm{PB}=4 \mathrm{~cm} . \) Is \( \mathrm{AB} \| \mathrm{QR} \) ? Give reasons for your answer.
- In the figure, tangents \( P Q \) and \( P R \) are drawn from an external point \( P \) to a circle with centre $O$, such that \( \angle R P Q=30^{\circ} . \) A chord \( R S \) is drawn parallel to the tangent \( P Q \). Find \( \angle R Q S \)."\n
Kickstart Your Career
Get certified by completing the course
Get Started