In $ \triangle \mathrm{ABC}, \mathrm{M} $ and $ \mathrm{N} $ are points of $ \mathrm{AB} $ and $ \mathrm{AC} $ respectively and $ \mathrm{MN} \| \mathrm{BC} $. If $ \mathrm{AM}=x $, $ \mathrm{MB}=x-2, \mathrm{AN}=x+2 $ and $ \mathrm{NC}=x-1 $, find the value of $ x $.
Given:
In \( \triangle \mathrm{ABC}, \mathrm{M} \) and \( \mathrm{N} \) are points of \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively and \( \mathrm{MN} \| \mathrm{BC} \).
\( \mathrm{AM}=x \), \( \mathrm{MB}=x-2, \mathrm{AN}=x+2 \) and \( \mathrm{NC}=x-1 \).
To do:
We have to find the value of \( x \).
Solution:
We know that,
The line drawn parallel to one side of a triangle and cutting the other two sides divides the other two sides in equal proportion.
Therefore,
$\frac{AM}{BM}=\frac{AN}{NC}$
$\frac{x}{x-2}=\frac{x+2}{x-1}$
$x(x-1)=(x-2)(x+2)$
$x^2-x=x^2-2^2$
$x^2-x^2-x=-4$
$x=4$
Hence, the value of $x$ is $4\ cm$.
Related Articles In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=2 x^{2} \) and \( \mathrm{CM}=8 x^{2} \), find \( \mathrm{BM} \), AB and \( \mathrm{BC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=x+7, \mathrm{BM}=x+2 \) and \( \mathrm{CM}=x \), findthe value of \( x \).
In \( \Delta \mathrm{XYZ}, \mathrm{S} \) and \( \mathrm{T} \) are points of \( \mathrm{XY} \) and \( \mathrm{XZ} \) respectively and ST \( \| \mathrm{YZ} \). If \( \mathrm{XS}=4 \mathrm{~cm} \), \( \mathrm{XT}=8 \mathrm{~cm}, \mathrm{SY}=x-4 \mathrm{~cm} \) and \( \mathrm{TZ}=3 x-19 \mathrm{~cm} \) find the value of \( x \).
Find \( \mathrm{x} \) if \( \mathrm{AB}\|\mathrm{CD}\| \mathrm{EF} \)."\n
In \( \triangle \mathrm{ABC}, \mathrm{M} \) and \( \mathrm{N} \) are the midpoints of \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively. If the area of \( \triangle \mathrm{ABC} \) is \( 90 \mathrm{~cm}^{2} \), find the area of \( \triangle \mathrm{AMN} \).
Draw the graph of the polynomial \( \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-8 \).
\( \mathrm{X}, \mathrm{Y} \) and \( \mathrm{Z} \) are the midpoints of the sides of \( \Delta \mathrm{PQR} . \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are the midpoints of the sides of \( \triangle \mathrm{XYZ} \). If \( \mathrm{PQR}=240 \mathrm{~cm}^{2} \), find \( \mathrm{XYZ} \) and \( \mathrm{ABC} \).
In Fig. 7.48, sides \( \mathrm{AB} \) and \( \mathrm{AC} \) of \( \triangle \mathrm{ABC} \) are extended to points \( \mathrm{P} \) and \( \mathrm{Q} \) respectively. Also, \( \angle \mathrm{PBC}\mathrm{AB} \)."\n
In the given figure, $AD$ is a median of a triangle $ABC$ and $AM \perp BC$. Prove that(i)$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^{2}$(ii) $\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \times \mathrm{DM}+(\frac{\mathrm{BC}}{2})^2$(iii) $\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$"
In \( \triangle \mathrm{ABC} \). the bisector of \( \angle \mathrm{A} \) intersects \( \mathrm{BC} \) at \( \mathrm{D} \). If \( \mathrm{AB}=8, \mathrm{AC}=10 \) and \( \mathrm{BC}=9 \), find \( \mathrm{BD} \) and \( \mathrm{DC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \). If \( \mathrm{AC}-\mathrm{BC}=4 \) and \( \mathrm{BC}-\mathrm{AB}=4 \), find all the three sides of \( \triangle \mathrm{ABC} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
\( \mathrm{D} \) and \( \mathrm{E} \) are points on sides \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively of \( \triangle \mathrm{ABC} \) such that ar \( (\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC}) \). Prove that $DE\|BC$.
Kickstart Your Career
Get certified by completing the course
Get Started