In $ \triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC} $ and $ \mathrm{AM} $ is an altitude. If $ A M=15 $ and the perimeter of $ \triangle A B C $ is 50 , find the area of $ \triangle \mathrm{ABC} $.
Given:
In \( \triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC} \) and \( \mathrm{AM} \) is an altitude.
\( A M=15 \) and the perimeter of \( \triangle A B C \) is 50.
To do:
We have to find the area of \( \triangle \mathrm{ABC} \).
Solution:
Let $AB=AC=x$
In $\triangle ABC$,
By Pythagoras theorem,
$BC^2 =AB^2+AC^2$
$=x^2+x^2$
$=2x^2$
$BC=\sqrt{2x^2}$
$BC=x\sqrt2$
$AB+BC+CA=50$
$x+x+x\sqrt2=50$
$x(2+\sqrt2)=50$
$x=\frac{50}{2+\sqrt2}$
$x=\frac{50(2-\sqrt2)}{(2+\sqrt2)(2-\sqrt2)}$
$x=\frac{50(2-\sqrt2)}{4-2}$
$x=25(2-\sqrt{2})$
Area of the triangle $=\frac{1}{2}\times [25(2-\sqrt2)]^2$
$=\frac{625(4+2-4\sqrt2)}{2}$
$=625(3-2\sqrt2)$
Related Articles In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{BM}=6 \) and \( \mathrm{CM}=2 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( A M=9 \) and \( C M=16 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \mathrm{M} \) and \( \mathrm{N} \) are the midpoints of \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively. If the area of \( \triangle \mathrm{ABC} \) is \( 90 \mathrm{~cm}^{2} \), find the area of \( \triangle \mathrm{AMN} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=10 \) and \( \mathrm{CM}=5 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AM}=\mathrm{BM}=12 \), find \( \mathrm{AC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}+\angle \mathrm{C} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{AM}=\sqrt{12} \) and \( \mathrm{BC}=8 \), find BM.
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
\( \Delta \mathrm{ABC} \sim \Delta \mathrm{XZY} \). If the perimeter of \( \triangle \mathrm{ABC} \) is \( 45 \mathrm{~cm} \), the perimeter of \( \triangle \mathrm{XYZ} \) is \( 30 \mathrm{~cm} \) and \( \mathrm{AB}=21 \mathrm{~cm} \), find \( \mathrm{XY} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \). If \( \mathrm{AC}-\mathrm{BC}=4 \) and \( \mathrm{BC}-\mathrm{AB}=4 \), find all the three sides of \( \triangle \mathrm{ABC} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{AB}=2 \sqrt{10} \) and \( \mathrm{AM}=5 \), find \( \mathrm{CM} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{EFD} \). If \( \mathrm{AB}: \mathrm{BC}: \mathrm{CA}=4: 3: 5 \) and the perimeter of \( \triangle \mathrm{DEF} \) is \( 36 \mathrm{~cm} \), find all the sides of \( \triangle \mathrm{DEF} \).
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is the perpendicular bisector of \( \mathrm{BC} \) (see Fig. 7.30). Show that \( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \)."\n
\( \mathrm{ABC} \) is a triangle in which altitudes \( \mathrm{BE} \) and \( \mathrm{CF} \) to sides \( \mathrm{AC} \) and \( \mathrm{AB} \) are equal (see Fig. 7.32). Show that(i) \( \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \)(ii) \( \mathrm{AB}=\mathrm{AC} \), i.e., \( \mathrm{ABC} \) is an isosceles triangle."\n
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=\sqrt{30} \) and \( \mathrm{CM}=3 \), find \( \mathrm{AC} \).
Kickstart Your Career
Get certified by completing the course
Get Started