- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x=\frac{\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}-b^{2}}}{\sqrt{a^{2}+b^{2}}-\sqrt{a^{2}-b^{2}}} $, then prove that $ b^{2} x^{2}-2 a^{2} x+b^{2}=0 $.
Given:
\( x=\frac{\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}-b^{2}}}{\sqrt{a^{2}+b^{2}}-\sqrt{a^{2}-b^{2}}} \)
To do:
We have to prove that \( b^{2} x^{2}-2 a^{2} x+b^{2}=0 \).
Solution:
$ \begin{array}{l}
x=\frac{\sqrt{a^{2} +b^{2}} +\sqrt{a^{2} -b^{2}}}{\sqrt{a^{2} +b^{2}} -\sqrt{a^{2} -b^{2}}}\\
x=\frac{\left(\sqrt{a^{2} +b^{2}} +\sqrt{a^{2} -b^{2}}\right)\left(\sqrt{a^{2} +b^{2}} +\sqrt{a^{2} -b^{2}}\right)}{\left(\sqrt{a^{2} +b^{2}} -\sqrt{a^{2} -b^{2}}\right)\left(\sqrt{a^{2} +b^{2}} +\sqrt{a^{2} -b^{2}}\right)}\\
x=\frac{\left(\sqrt{a^{2} +b^{2}}\right)^{2} +\left(\sqrt{a^{2} -b^{2}}\right)^{2} +2\sqrt{a^{2} +b^{2}} \times \sqrt{a^{2} -b^{2}}}{\left(\sqrt{a^{2} +b^{2}}\right)^{2} -\left(\sqrt{a^{2} -b^{2}}\right)^{2}}\\
x=\frac{a^{2} +b^{2} +a^{2} -b^{2} +2\sqrt{a^{4} -b^{4}}}{a^{2} +b^{2} -\left( a^{2} -b^{2}\right)}\\
x=\frac{2a^{2} +2\sqrt{a^{4} -b^{4}}}{2b^{2}}\\
x=\frac{a^{2} +\sqrt{a^{4} -b^{4}}}{b^{2}}\\
Therefore,\\
b^{2} x^{2} -2a^{2} x+b^{2} =b^{2}\left(\frac{a^{2} +\sqrt{a^{4} -b^{4}}}{b^{2}}\right)^{2} -2a^{2}\left(\frac{a^{2} +\sqrt{a^{4} -b^{4}}}{b^{2}}\right) +b^{2}\\
=\frac{a^{4} +a^{4} -b^{4} +2a^{2}\sqrt{a^{4} -b^{4}} -2a^{4} -2a^{2}\sqrt{a^{4} -b^{4}} +b^{4}}{b^{2}}\\
=\frac{2a^{4} -2a^{4}}{b^{2}}\\
=0
\end{array}$
Hence proved.
- Related Articles
- Given that $sin\ \theta = \frac{a}{b}$, then $cos\ \theta$ is equal to(A) \( \frac{b}{\sqrt{b^{2}-a^{2}}} \)(B) \( \frac{b}{a} \)(C) \( \frac{\sqrt{b^{2}-a^{2}}}{b} \)(D) \( \frac{a}{\sqrt{b^{2}-a^{2}}} \)
- $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}+\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}=a+b \sqrt{10}$, find a and b.
- Which one of the following is a polynomial?(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$(B) $\sqrt{2 x}-1$(C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
- If $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$, find the value $x^{2}+y^{2}+x y$.
- Solve for $x:\ \sqrt{3} x^{2} -2\sqrt{2} x-2\sqrt{3} =0$."\n33207"
- In each of the following determine rational numbers $a$ and $b$:\( \frac{4+\sqrt{2}}{2+\sqrt{2}}=a-\sqrt{b} \)
- If $p(x) = x^2 - 2\sqrt{2}x+1$, then find the value of $p(2\sqrt{2})$.
- In each of the following determine rational numbers $a$ and $b$:\( \frac{3+\sqrt{2}}{3-\sqrt{2}}=a+b \sqrt{2} \)
- If $p(x)=x^{2}-2 \sqrt{2} x+1$, then what is the value of $p(2 \sqrt{2})$
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- Which of the following is not a polynomial?(a) $x^{2}+\sqrt{2} x+3$ (b) $x^{3}+3 x^{2}-3$ (c) $6 x+4$ d) $x^{2}-\sqrt{2 x}+6$
- Show that the equation $2(a^2+b^2)x^2+2(a+b)x+1=0$ has no real roots, when a≠b.
- Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- Factorize:$x^2 - 2\sqrt{2}x- 30$
