- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve for $x$:
$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
Given:
Given quadratic equation is $\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$.
To do:
We have to solve the given quadratic equation.
Solution:
$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
$\frac{(x-1)(x-4)+(x-3)(x-2)}{(x-2)(x-4)}=\frac{3\times3+1}{3}$
$\frac{x^2-x-4x+4+x^2-3x-2x+6}{x^2-2x-4x+8}=\frac{9+1}{3}$
$\frac{2x^2-10x+10}{x^2-6x+8}=\frac{10}{3}$
$3(2)(x^2-5x+5)=10(x^2-6x+8)$
$3x^2-15x+15=5x^2-30x+40$
$(5-3)x^2+(-30+15)x+40-15=0$
$2x^2-15x+25=0$
Comparing the given quadratic equation with the standard form of the quadratic equation $ax^2+bx+c=0$, we get,
$a=2, b=-15$ and $c=25$.
Therefore, the roots of the given equation are
$x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$
$x=\frac{-(-15)\pm \sqrt{(-15)^2-4(2)(25)}}{2(2)}$
$x=\frac{15\pm \sqrt{225-200}}{4}$
$x=\frac{15\pm \sqrt{25}}{4}$
$x=\frac{15\pm 5)}{4}$
$x=\frac{15+5}{4}$ or $x=\frac{15-5}{4}$
$x=\frac{20}{4}$ or $x=\frac{10}{4}$
$x=5$ or $x=\frac{5}{2}$
The values of $x$ are $\frac{5}{2}$ and $5$.