Solve $ \frac{2 x+1}{3 x-2}=1\frac{1}{4} $.
Given:
\( \frac{2 x+1}{3 x-2}=1\frac{1}{4} \).
To do:
We have to solve for $x$.
Solution:
\( \frac{2 x+1}{3 x-2}=1\frac{1}{4} \)
\( \frac{2 x+1}{3 x-2}=\frac{1\times4+1}{4} \)
\( \frac{2 x+1}{3 x-2}=\frac{5}{4} \)
$4(2x+1)=5(3x-2)$
$8x+4=15x-10$
$15x-8x=4+10$
$7x=14$
$x=\frac{14}{7}$
$x=2$
The value of $x$ is $2$.
- Related Articles
- Solve for $x$:$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- Solve for x:$\frac{1}{x+1} +\frac{2}{x+2} =\frac{4}{x+4} ;\ x\neq -1,\ -2,\ -4$
- $\frac{x-1}{2}+\frac{2 x-1}{4}=\frac{x-1}{3}-\frac{2 x-1}{6}$.
- Solve: \( \frac{x+5}{2}=1+\frac{2 x-1}{3} \).
- Solve the following expression:$\frac{X}{2}-\frac{1}{4}=\frac{X}{3}+\frac{1}{2}$
- Solve: \( \frac{x}{2}-\frac{1}{4}\left(x-\frac{1}{3}\right)=\frac{1}{6}(x+1)+\frac{1}{12} \)
- Solve the following quadratic equation by factorization: $\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
- Solve for x:$\frac{1}{( x-1)( x-2)} +\frac{1}{( x-2)( x-3)} =\frac{2}{3} \ ,\ x\neq 1,2,3$
- Solve$\frac{3}{x+1} -\frac{2}{3x-1} = \frac{1}{2}$
- If \( x+\frac{1}{x}=3 \), calculate \( x^{2}+\frac{1}{x^{2}}, x^{3}+\frac{1}{x^{3}} \) and \( x^{4}+\frac{1}{x^{4}} \).
- Solve the following:\( \frac{3}{4}(7 x-1)-\left(2 x-\frac{1-x}{2}\right)=x+\frac{3}{2} \)
- Solve for $x$:$\frac{1}{x}+\frac{2}{2x-3}=\frac{1}{x-2}, x≠0, \frac{3}{2}, 2$
- Solve for $x$:\( 3 x-\frac{x-2}{3}=4-\frac{x-1}{4} \)
- If \( x^{4}+\frac{1}{x^{4}}=194 \), find \( x^{3}+\frac{1}{x^{3}}, x^{2}+\frac{1}{x^{2}} \) and \( x+\frac{1}{x} \)
- Solve the following quadratic equation by factorization: $\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2x+3}{x-2}, x ≠ 1, -2, 2$
Kickstart Your Career
Get certified by completing the course
Get Started