If $ x=2 \sec ^{2} \theta $ and $ y=2 \tan ^{2} \theta-1 $, then find $ x-y $.
Given:
\( x=2 \sec ^{2} \theta \) and \( y=2 \tan ^{2} \theta-1 \).
To do:
We have to find \( x-y \).
Solution:
We know that,
$\sec ^{2} \theta - \tan ^{2} \theta = 1$
Therefore,
$x-y=2 \sec ^{2} \theta -(2 \tan ^{2} \theta-1)$
$x-y=2 \sec ^{2} \theta -2 \tan ^{2} \theta+1$
$x-y=2(\sec ^{2} \theta - \tan ^{2} \theta)+1$
$x-y=2(1)+1$
$x-y=3$
The value of $x-y$ is $3$.
- Related Articles
- Prove the following identities:If \( x=a \sec \theta+b \tan \theta \) and \( y=a \tan \theta+b \sec \theta \), prove that \( x^{2}-y^{2}=a^{2}-b^{2} \)
- If \( x=a \sec \theta \cos \phi, y=b \sec \theta \sin \phi \) and \( z=c \tan \theta \), show that \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \)
- If $\frac{x}{a}cos\theta+\frac{y}{b}sin\theta=1$ and $\frac{x}{a}sin\theta-\frac{y}{b}cos\theta=1$, prove that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
- If $2cos\theta-sin\theta=x$ and $cos\theta-3sin\theta=y$. Prove that $2x^2+y^2-2xy=5$.
- If \( \tan \theta=\frac{1}{\sqrt{2}} \), find the value of \( \frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\cot ^{2} \theta} \)
- If \( \theta=30^{\circ} \), verify that:\( \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \)
- Prove the following trigonometric identities:\( \sec ^{6} \theta=\tan ^{6} \theta+3 \tan ^{2} \theta \sec ^{2} \theta+1 \)
- If $tan\theta+cot\theta=5$, then find the value of $tan^{2}\theta+cot^{2}\theta$.
- If $tan\theta +cot\ \theta =5$, then find the value of $tan^{2} \theta +cot^{2} \theta $.
- If \( \theta=30^{\circ} \), verify that:\( \cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} \)
- If \( \tan \theta=\frac{1}{\sqrt{7}} \), show that \( \frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}=\frac{3}{4} \)
- Prove that : $( sin \theta+ cosec \theta)^{2}+( cos \theta+sec \theta)^{2} =7+ tan^{2} \theta+ cot^{2} \theta$.
- If \( \theta=30^{\circ} \), verify that:\( \sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta} \)
- If \( \sqrt{3} \tan \theta=1 \), then find the value of \( \sin ^{2} \theta-\cos ^{2} \theta \).
- If $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$, find x and y.
Kickstart Your Career
Get certified by completing the course
Get Started