# If $\theta=30^{\circ}$, verify that:$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

Given:

$\theta=30^{\circ}$

To do:

We have to verify that $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$.

Solution:

$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

This implies,

$\tan 2(30^{\circ})=\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$

$\tan 60^{\circ}=\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$

We know that,

$\tan 60^{\circ}=\sqrt3$

$\tan 30^{\circ}=\frac{1}{\sqrt3}$

Let us consider LHS,

$\tan 2 \theta=\tan 60^{\circ}$

$=\sqrt3$

Let us consider RHS,

$\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$

$=\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}$

$=\frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}$

$=\frac{\frac{2}{\sqrt{3}}}{\frac{3-1}{3}}$

$=\frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}}$

$=\frac{2}{\sqrt{3}} \times \frac{3}{2}$

$=\frac{\sqrt{3} \times \sqrt{3}}{\sqrt{3}}$

$=\sqrt{3}$

LHS $=$ RHS

Hence proved.

Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

33 Views