- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \sqrt{3} \tan \theta=1 $, then find the value of $ \sin ^{2} \theta-\cos ^{2} \theta $.
Given:
\( \sqrt{3} \tan \theta=1 \)
To do:
We have to find the value of \( \sin ^{2}-\cos ^{2} \theta \).
Solution:
$\sqrt{3} \tan \theta=1$
$\Rightarrow \tan \theta=\frac{1}{\sqrt3}$
$\Rightarrow \tan \theta=\tan 30^{\circ}$
$\Rightarrow \theta=30^{\circ}$
Therefore,
$\sin ^{2} \theta-\cos ^{2} \theta=\sin ^{2} 30^{\circ}-\cos ^{2} 30^{\circ}$
$=(\frac{1}{2})^{2}-(\frac{\sqrt{3}}{2})^{2}$
$=\frac{1}{4}-\frac{3}{4}$
$=\frac{1-3}{4}$
$=\frac{-2}{4}$
$=\frac{-1}{2}$
The value of \( \sin ^{2}-\cos ^{2} \theta \) is $\frac{-1}{2}$.
- Related Articles
- If \( \sqrt{3} \tan \theta=3 \sin \theta \), find the value of \( \sin ^{2} \theta-\cos ^{2} \theta \)
- If \( \sqrt{3} \tan \theta-1=0 \), find the value of \( \sin ^{2}-\cos ^{2} \theta \).
- If \( 3 \cos \theta-4 \sin \theta=2 \cos \theta+\sin \theta \), find \( \tan \theta \).
- If \( 3 \cos \theta=1 \), find the value of \( \frac{6 \sin ^{2} \theta+\tan ^{2} \theta}{4 \cos \theta} \)
- If $sin\theta +cos\theta=\sqrt{3}$, then prove that $tan\theta+cot\theta=1$.
- If \( \cos \theta=\frac{5}{13} \), find the value of \( \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} \)
- If \( \sin \theta=\frac{12}{13} \), find the value of \( \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} \)
- If \( \tan \theta=\frac{12}{13} \), find the value of \( \frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta} \)
- If \( \cos \theta=\frac{3}{5} \), find the value of \( \frac{\sin \theta-\frac{1}{\tan \theta}}{2 \tan \theta} \)
- If $sin\theta+sin^{2}\theta=1$, then evaluate $cos^{2}\theta+cos^{4}\theta$.
- If \( \cot \theta=\frac{1}{\sqrt{3}} \), find the value of \( \frac{1-\cos ^{2} \theta}{2-\sin ^{2} \theta} \)
- Prove that: $\frac{sin \theta-2 sin ^{3} \theta}{2 cos ^{3} \theta-cos \theta}= tan \theta$
- If \( 2 \sin ^{2} \theta-\cos ^{2} \theta=2 \), then find the value of \( \theta \).
- If $\sqrt{3}cot^{2}\theta-4cot\theta+\sqrt{3}=0$, then find the value of $cot^{2}\theta+tan^{2}\theta$.
- If \( \cos \theta+\cos ^{2} \theta=1 \), prove that\( \sin ^{12} \theta+3 \sin ^{10} \theta+3 \sin ^{8} \theta+\sin ^{6} \theta+2 \sin ^{4} \theta+2 \sin ^{2} \theta-2=1 \)

Advertisements