If $G$ be the centroid of a triangle ABC and $P$ be any other point in the plane, prove that $PA^2 + PB^2 + PC^2 = GA^2 + GB^2 + GC^2 + 3GP^2$.


Given:

$G$ is the centroid of a triangle ABC and $P$ is any other point in the plane.

To do:

We have to prove that $PA^2 + PB^2 + PC^2 = GA^2 + GB^2 + GC^2 + 3GP^2$.

Solution:

Let $G(u,v)$ be the centroid of a $\triangle ABC$ and the coordinates of $A$ are $(x_1, y_1)$, $B$ are $(x_2, y_2)$ and $C$ are $(x_3, y_3)$.

Let $P (h, k)$ be any point in the plane.


The coordinates of centroid \( \mathrm{G} \) are \( (\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}) \)

This implies,

\( u=\frac{x_{1}+x_{2}+x_{3}}{3} \) and \( v=\frac{y_{1}+y_{2}+y_{3}}{3} \)

Let us consider LHS,

\( \mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}=\left(h-x_{1}\right)^{2}+\left(k-y_{1}\right)^{2}+\left(h-x_{2}\right)^{2}+\left(k-y_{2}\right)^{2}+\left(h-x_{3}\right)^{2}+\left(k-y_{3}\right)^{2} \)

\( = 3\left(h^{2}+k^{2}\right)+\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)-2 h\left(x_{1}+x_{2}+x_{3}\right)-2 k\left(y_{1}+y_{2}+y_{3}\right) \)

\( =\left(3 h^{2}+k^{2}\right)+\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)-2 h(3 u)-2 k(3 v) \)

\( =3\left(h^{2}+k^{2}\right)-6 h u-6 k v+\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right) \)

Now, let us consider RHS, 
\( \mathrm{G} \mathrm{A}^{2}+\mathrm{GB}^{2}+\mathrm{GC}^{2}+3 \mathrm{GD}^{2} \)

\( =\left(u-x_{1}\right)^{2}+\left(v-y_{1}\right)^{2}+\left(u-x_{2}\right)^{2}+\left(v-y_{2}\right)^{2}+\left(u-x_{3}\right)^{2}+\left(v-y_{3}\right)^{2}+3\left[(u-h)^{2}+(v-k)^{2}\right] \)

\( =3\left(u^{2}+v^{2}\right)+\left(x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+x_{3}^{2}+y_{3}^{2}\right)-2 u\left(x_{1}+x_{2}+x_{3}\right)-2 v\left(y_{1}+y_{2}+y_{3}\right) \)
\( +3\left(u^{2}+h^{2}-2 u h+v^{2}+k^{2}-2 v k\right) \)

\( =6\left(u^{2}+v^{2}\right)+\left(x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+x_{3}^{2}+y_{3}^{2}\right)-2 u(3 u)-2 v(3 v)+3\left(h^{2}+k^{2}\right)-6 u h-6 v k \)

\( =\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)+3\left(h^{2}+k^{2}\right)-6 u h-6 v k \)
Therefore,

L.H.S.  $=$ R.H.S.

Hence proved.

Tutorialspoint
Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

29 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements