- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $p(x) = x^2 - 2\sqrt{2}x+1$, then find the value of $p(2\sqrt{2})$.
Given :
The given expression is $p(x) = x^2 - 2\sqrt{2}x+1$.
To do :
We have to find the value of $p(2\sqrt{2})$.
Solution :
$p(x) = x^2 - 2\sqrt{2}x+1$
$p(2\sqrt{2}) = (2\sqrt{2})^2 - 2\sqrt{2} (2\sqrt{2}) +1$
$= (2\sqrt{2})^2 -(2\sqrt{2})^2 +1 $
$ = 0 + 1 = 1$
Therefore, the value of $p(2\sqrt{2})$ is 1.
- Related Articles
- If $p(x)=x^{2}-2 \sqrt{2} x+1$, then what is the value of $p(2 \sqrt{2})$
- Find the value of \( k \), if \( x-1 \) is a factor of \( p(x) \) in each of the following cases:(i) \( p(x)=x^{2}+x+k \)(ii) \( p(x)=2 x^{2}+k x+\sqrt{2} \)(iii) \( p(x)=k x^{2}-\sqrt{2} x+1 \)(iv) \( p(x)=k x^{2}-3 x+k \)
- If $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$, find the value $x^{2}+y^{2}+x y$.
- If \( x=\frac{1}{3+2 \sqrt{2}}, \) then the value of \( x-\frac{1}{x} \) is
- If $x - \frac{1}{x} = \sqrt{5}$, find the value of $x^2 + \frac{1}{x^2}$
- If \( x=3+\sqrt{8} \), find the value of \( x^{2}+\frac{1}{x^{2}} \).
- Verify whether the following are zeroes of the polynomial, indicated against them.(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- If \( x=\frac{\sqrt{3}+1}{2} \), find the value of \( 4 x^{3}+2 x^{2}-8 x+7 \)
- If \( x-\frac{1}{x}=3+2 \sqrt{2} \), find the value of \( x^{3}- \frac{1}{x^{3}} \).
- Find the values of $x$ in each of the following:\( 2^{5 x} \p 2^{x}=\sqrt[5]{2^{20}} \)
- If \( x=\frac{\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}-b^{2}}}{\sqrt{a^{2}+b^{2}}-\sqrt{a^{2}-b^{2}}} \), then prove that \( b^{2} x^{2}-2 a^{2} x+b^{2}=0 \).
- Find the value of the discriminant.$\sqrt{2}x^2 + 4x +2\sqrt{2} = 0$.
- Solve for $x:\ \sqrt{3} x^{2} -2\sqrt{2} x-2\sqrt{3} =0$."\n33207"
- If $x^2-6x+1=0$, then find the value of $x^2+\frac{1}{x^2}$.
- If $x\ =\ 2\ +\ 3\sqrt{2}$Find $x\ + \frac{4}{x}$.

Advertisements