- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \cos \theta=\frac{5}{13} $, find the value of $ \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} $
Given:
\( \cos \theta=\frac{5}{13} \).
To do:
We have to find the value of \( \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} \).
Solution:
Let, in a triangle $ABC$ right-angled at $B$ and $\ cos\ \theta = cos\ A=\frac{5}{13}$.
We know that,
In a right-angled triangle $ABC$ with right angle at $B$,
By Pythagoras theorem,
$AC^2=AB^2+BC^2$
By trigonometric ratios definitions,
$sin\ \theta=\frac{Opposite}{Hypotenuse}=\frac{BC}{AC}$
$cos\ \theta=\frac{Adjacent}{Hypotenuse}=\frac{AB}{AC}$
$tan\ \theta=\frac{Opposite}{Adjacent}=\frac{BC}{AB}$
Here,
$AC^2=AB^2+BC^2$
$\Rightarrow (13)^2=(5)^2+BC^2$
$\Rightarrow BC^2=169-25$
$\Rightarrow BC=\sqrt{144}=12$
Therefore,
$sin\ \theta=\frac{BC}{AC}=\frac{12}{13}$
$tan\ \theta=\frac{BC}{AB}=\frac{12}{5}$
This implies,$\frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta}=\frac{\left(\frac{12}{13}\right)^{2} -\left(\frac{5}{13}\right)^{2}}{2\left(\frac{12}{13}\right)\left(\frac{5}{13}\right)} \times \frac{1}{\left(\frac{12}{5}\right)^{2}}$
$=\frac{\frac{144-25}{169}}{\frac{120}{169}} \times \frac{25}{144}$
$=\frac{119}{120} \times \frac{25}{144}$
$=\frac{119\times 5}{24\times 144}$
$=\frac{595}{3456}$
The value of \( \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} \) is \( \frac{595}{3456} \).