- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that:$ \frac{1+\cos \theta+\sin \theta}{1+\cos \theta-\sin \theta}=\frac{1+\sin \theta}{\cos \theta} $
To do:
We have to prove that \( \frac{1+\cos \theta+\sin \theta}{1+\cos \theta-\sin \theta}=\frac{1+\sin \theta}{\cos \theta} \).
Solution:
We know that,
$\sin^2 A+\cos^2 A=1$
$\operatorname{cosec}^2 A-\cot^2 A=1$
$\sec^2 A-\tan^2 A=1$
$\cot A=\frac{\cos A}{\sin A}$
$\tan A=\frac{\sin A}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sec A=\frac{1}{\cos A}$
Therefore,
$\frac{1+\cos \theta+\sin \theta}{1+\cos \theta-\sin \theta}=\frac{\{(1+\cos \theta)+\sin \theta\}\{(1+\cos \theta)+\sin \theta\}}{\{(1+\cos \theta)-\sin \theta\}\{(1+\cos \theta)+\sin \theta\}}$ (Multiplying numerator and denominator by $1+\cos \theta+\sin \theta$)
$=\frac{[(1+\cos \theta)+\sin \theta]^{2}}{(1+\cos \theta)^{2}-\sin ^{2} \theta}$
$=\frac{1+\cos ^{2} \theta+2 \cos \theta+\sin ^{2} \theta+2 \sin \theta(1+\cos \theta)}{1+\cos ^{2} \theta+2 \cos \theta-\sin ^{2} \theta}$
$=\frac{2+2 \cos \theta+2 \sin \theta(1+\cos \theta)}{1+\cos ^{2} \theta+2 \cos \theta-\left(1-\cos ^{2} \theta\right)}$
$=\frac{2(1+\cos \theta)+2 \sin \theta(1+\cos \theta)}{2 \cos ^{2} \theta+2 \cos \theta}$
$=\frac{2(1+\cos \theta)(1+\sin \theta)}{2 \cos \theta(1+\cos \theta)}$
$=\frac{1+\sin \theta}{\cos \theta}$
Hence proved.