- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \cos \theta=\frac{3}{5} $, find the value of $ \frac{\sin \theta-\frac{1}{\tan \theta}}{2 \tan \theta} $
Given:
\( \cos \theta=\frac{3}{5} \)
To do:
We have to find the value of \( \frac{\sin \theta-\frac{1}{\tan \theta}}{2 \tan \theta} \).
Solution:
Let, in a triangle $ABC$ right-angled at $B$, $cos\ \theta = cos\ A=\frac{3}{5}$.
We know that,
In a right-angled triangle $ABC$ with right angle at $B$,
By Pythagoras theorem,
$AC^2=AB^2+BC^2$
By trigonometric ratios definitions,
$sin\ \theta=\frac{Opposite}{Hypotenuse}=\frac{BC}{AC}$
$cos\ \theta=\frac{Adjacent}{Hypotenuse}=\frac{AB}{AC}$
$tan\ \theta=\frac{Opposite}{Adjacent}=\frac{BC}{AB}$
Here,
$AC^2=AB^2+BC^2$
$\Rightarrow (5)^2=(3)^2+BC^2$
$\Rightarrow BC^2=25-9$
$\Rightarrow BC=\sqrt{16}=4$
Therefore,
$sin\ \theta=\frac{BC}{AC}=\frac{4}{5}$
$tan\ \theta=\frac{BC}{AB}=\frac{4}{3}$
$\Rightarrow \frac{1}{tan\ \theta}=\frac{1}{\frac{4}{3}}=\frac{3}{4}$
This implies,
$\frac{\sin \theta-\frac{1}{\tan \theta}}{2 \tan \theta}=\frac{\left(\frac{4}{5}\right) -\left(\frac{3}{4}\right)}{2\left(\frac{4}{3}\right)}$
$=\frac{\frac{4( 4) -3( 5)}{5( 4)}}{\frac{8}{3}}$
$=\frac{\frac{16-15}{20}}{\frac{8}{3}}$
$=\frac{1}{20} \times \frac{3}{8}$
$=\frac{3}{160}$
The value of \( \frac{\sin \theta-\frac{1}{\tan \theta}}{2 \tan \theta} \) is \( \frac{3}{160} \).