- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $9x^2 + 25y^2 = 181$ and $xy = -6$, find the value of $3x + 5y$.
Given:
$9x^2 + 25y^2 = 181$ and $xy = -6$
To do:
We have to find the value of $3x + 5y$.
Solution:
We know that,
$(a+b)^2=a^2+b^2+2ab$
$(a-b)^2=a^2+b^2-2ab$
$(a+b)(a-b)=a^2-b^2$
Therefore,
$(3x + 5y)^2 = (3x)^2 + (5y)^2 + 2 \times 3x \times 5y$
$=9x^2 + 25y^2 + 30xy$
$= 181 + 30 \times (-6)$ [Since $9x^2 + 25y^2 = 181$ and $xy = -6$]
$= 181 - 180$
$= 1$
$\Rightarrow 3x+5y= \sqrt{1}$
$\Rightarrow 3x+5y= \pm 1$
The value of $3x+5y$ is $\pm 1$.
Advertisements