$3x-4y = 10$ and $xy = -1$, find the value of $(9x^2 + 16y^2)$.


Given:

$3x -4y = 10$ and $xy = -1$

To do:

We have to find the value of $9x^2 + 16y^2$.

Solution:

We know that,

$(a+b)^2=a^2+b^2+2ab$

$(a-b)^2=a^2+b^2-2ab$

$(a+b)(a-b)=a^2-b^2$

Therefore,

$3x - 4y = 10$

Squaring both sides, we get,

$(3x - 4y)^2 = (10)^2$

$(3x)^2 + (4y)^2 - 2 \times 3x \times 4y = 100$

$9x^2 + 16y^2 - 24xy=100$

$9x^2 + 16y^2 =100+24(-1)$

$9x^2 + 16y^2 = 100 - 24$

$9x^2 + 16y^2 = 76$

The value of $9x^2+16y^2$ is $76$.  

Tutorialspoint
Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

34 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements