- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $x – y = 7$ and $xy = 9$, find the value of $x^2+y^2$.
Given:
$x – y = 7$ and $xy = 9$
To do:
We have to find the value of $x^2+y^2$.
Solution:
The given expressions are $x – y = 7$ and $xy = 9$. Here, we have to find the value of $x^2 + y^2$. So, by squaring the given expression and using the identity $(a-b)^2=a^2-2ab+b^2$, we can find the required value.
$xy = 9$............(i)
$(a-b)^2=a^2-2ab+b^2$.............(ii)
Now,
$x – y = 7$
Squaring on both sides, we get,
$(x – y)^2 = 7^2$ [Using (ii)]
$x^2-2xy+y^2=49$
$x^2-2(9)+y^2=49$ [Using (i)]
$x^2-18+y^2=49$
$x^2+y^2=49+18$ (Transposing $-18$ to RHS)
$x^2+y^2=67$
Hence, the value of $x^2+y^2$ is $67$.
- Related Articles
- If $x + y = 4$ and $xy = 2$, find the value of $x^2 + y^2$.
- If $x^2 + y^2 = 29$ and $xy = 2$, find the value of(i) $x + y$(ii) $x - y$(iii) $x^4 + y^4$
- Given $(x^{2}+y^{2})$=74 and xy =35, find the value of:a) x+yb) x-y
- Find the value of$3 x^{2}-2 y^{2}$if x=-2 and y=2
- Simplify: $2(x^2 - y^2 +xy) -3(x^2 +y^2 -xy)$.
- If $x+y=19$ and $x-y=7$, then $xy=?$
- If $x=1,\ y=2$ and $z=5$, find the value of $x^{2}+y^{2}+z^{2}$.
- If \( 2 x+y=23 \) and \( 4 x-y=19 \), find the values of \( 5 y-2 x \) and \( \frac{y}{x}-2 \).
- Factorize:$4(x - y)^2 - 12(x -y) (x + y) + 9(x + y)^2$
- If $x = -2$ and $y = 1$, by using an identity find the value of the following:\( \left(4 y^{2}-9 x^{2}\right)\left(16 y^{4}+36 x^{2} y^{2}+81 x^{4}\right) \)
- If $x=1,\ y=2$ and $z=5$, find the value of $xy+yz-zx$.
- Factorize:$2(x+y)^2 - 9(x+y) -5$
- Find the product of $-3y (xy +y^2)$ and find its value for $x = 4$, and $y = 5$.
- The reduced form of $36 x^{2}-81 y^{2}$ isi$(6 x+9 y)(6 x-9 y) $ii$(6 x+9 y)(4 x-5) $iii.$(9 x+6 y)(9 x-6 y)$iv. $(9 y-6 x)(9 y+6 x) $
- Multiply:$x^2 +y^2 + z^2 - xy + xz + yz$ by $x + y - z$

Advertisements