- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Multiply:$9x^2 + 25y^2 + 15xy + 12x - 20y + 16$ by $3x - 5y + 4$
Given:
$9x^2 + 25y^2 + 15xy + 12x - 20y + 16$ and $3x - 5y + 4$
To do:
We have to multiply the given expressions.
Solution:
We know that,
$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$
Therefore,
$(9x^2 + 25y^3 + 15xy + 12x - 20y + 16) \times (3x - 5y + 4) = (3x -5y + 4) [(3x)^2 + (-5y)^2 + (4)^2 - 3x \times (-5y) - (-5y \times 4) - (4 \times 3x)]$
$= (3x)^3 + (-5y)^3 + (4)^3 - 3 \times 3x \times (-5y) \times 4$
$= 27x^3 - 125y^3 + 64 + 180xy$
Hence, $(9x^2 + 25y^3 + 15xy + 12x - 20y + 16) \times (3x - 5y + 4) = 27x^3 - 125y^3 + 64 + 180xy$.
Advertisements