- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the sum of the following arithmetic progressions:$ \frac{x-y}{x+y}, \frac{3 x-2 y}{x+y}, \frac{5 x-3 y}{x+y}, \ldots $ to $ n $ terms
Given:
Given A.P. is \( \frac{x-y}{x+y}, \frac{3 x-2 y}{x+y}, \frac{5 x-3 y}{x+y}, \ldots \)
To do:
We have to find the sum of the given A.P. to $n$ terms.
Solution:
Here,
$a=\frac{x-y}{x+y}, d=\frac{3 x-2 y}{x+y}-\frac{x-y}{x+y}=\frac{3 x-2 y-x+y}{x+y}$
\( \Rightarrow d=\frac{2 x-y}{x+y} \)
\( \therefore \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d] \)
\( =\frac{n}{2}\left[2 \times \frac{x-y}{x+y}+(n-1)\left(\frac{2 x-y}{x+y}\right)\right] \)
\( =\frac{n}{2}\left[\frac{2(x-y)}{x+y}+\frac{(n-1)(2 x-y)}{x+y}\right] \)
\( =\frac{n}{2(x+y)}[2(x-y)+(n-1)(2 x-y)] \)
\( =\frac{n}{2(x+y)}[2 x-2 y+2 n x-n y-2 x+y] \)
\( =\frac{n}{2(x+y)}[2 n x-n y-y] \)
\( =\frac{n}{2(x+y)}[n(2 x-y)-y] \)
The sum of the given A.P. to $n$ terms is $\frac{n}{2(x+y)}[n(2x-y)-y]$.
- Related Articles
- Solve the following pairs of equations:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- Find the sum of the following arithmetic progressions:\( (x-y)^{2},\left(x^{2}+y^{2}\right),(x+y)^{2}, \ldots, \) to \( n \) terms
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Simplify: $\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$.
- Solve the following system of equations:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
- Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- Solve the following system of equations:$\frac{5}{x+y} -\frac{2}{x-y}=-1$$\frac{15}{x+y}+\frac{7}{x-y}=10$
- Verify the property: $x \times y = y \times x$ by taking:(i) \( x=-\frac{1}{3}, y=\frac{2}{7} \)(ii) \( x=\frac{-3}{5}, y=\frac{-11}{13} \)(iii) \( x=2, y=\frac{7}{-8} \)(iv) \( x=0, y=\frac{-15}{8} \)
- Solve the following system of equations:$\frac{10}{x+y} +\frac{2}{x-y}=4$$\frac{15}{x+y}-\frac{9}{x-y}=-2$
- Find the following products:\( \left(\frac{3}{x}-\frac{5}{y}\right)\left(\frac{9}{x^{2}}+\frac{25}{y^{2}}+\frac{15}{x y}\right) \)
- Find the following products:\( \frac{7}{5} x^{2} y\left(\frac{3}{5} x y^{2}+\frac{2}{5} x\right) \)
- Simplify each of the following:$(\frac{x}{2}+\frac{y}{3})^{3}-(\frac{x}{2}-\frac{y}{3})^{3}$
- Find the product $-\frac{2}{5} x^{2} y^{2}(\frac{3 x}{2}-y^{2})$.
- Solve the following system of equations:$\frac{22}{x+y} +\frac{15}{x-y}=5$$\frac{55}{x+y}+\frac{45}{x-y}=14$
