- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following system of equations:
$\frac{10}{x+y} +\frac{2}{x-y}=4$
$\frac{15}{x+y}-\frac{9}{x-y}=-2$
Given:
The given system of equations is:
$\frac{10}{x+y} +\frac{2}{x-y}=4$
$\frac{15}{x+y}-\frac{9}{x-y}=-2$
To do:
We have to solve the given system of equations.
Solution:
Let $\frac{1}{x+y}=u$ and $\frac{1}{x-y}=v$
This implies, the given system of equations can be written as,
$\frac{10}{x+y} +\frac{2}{x-y}=4$
$10u+2v=4$
$10u+2v-4=0$---(i)
$\frac{15}{x+y}-\frac{9}{x-y}=-2$
$15u-9v=-2$
$15u=9v-2$
$u=\frac{9v-2}{15}$---(ii)
Substituting $u=\frac{9v-2}{15}$ in equation (i), we get,
$10(\frac{9v-2}{15})+2v-4=0$
$\frac{2(9v-2)}{3}=4-2v$
$18v-4=3(4-2v)$
$18v-4=12-6v$
$18v+6v=12+4$
$24v=16$
$v=\frac{16}{24}$
$v=\frac{2}{3}$
Using $v=\frac{2}{3}$ in equation (i), we get,
$10u+2(\frac{2}{3})-4=0$
$10u+\frac{4}{3}-4=0$
$10u+\frac{4-4\times3}{3}=0$
$10u+\frac{-8}{3}=0$
$10u=\frac{8}{3}$
$u=\frac{8}{3\times10}$
$u=\frac{4}{15}$
Using the values of $u$ and $v$, we get,
$\frac{1}{x+y}=\frac{4}{15}$
$\Rightarrow x+y=\frac{15}{4}$....(iii)
$\frac{1}{x-y}=\frac{2}{3}$
$\Rightarrow x-y=\frac{3}{2}$.....(iv)
Adding equations (iii) and (iv), we get,
$x+y+x-y=\frac{15}{4}+\frac{3}{2}$
$\Rightarrow 2x=\frac{15+2\times3}{4}$
$\Rightarrow 2x=\frac{21}{4}$
$\Rightarrow x=\frac{21}{8}$
Substituting the value of $x$ in (iii), we get,
$\frac{21}{8}+y=\frac{15}{4}$
$\Rightarrow y=\frac{15}{4}-\frac{21}{8}$
$\Rightarrow y=\frac{15\times2-21}{8}$
$\Rightarrow y=\frac{9}{8}$
Therefore, the solution of the given system of equations is $x=\frac{21}{8}$ and $y=\frac{9}{8}$.