- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Factorize each of the following expressions:$ 2 \sqrt{2} a^{3}+3 \sqrt{3} b^{3}+c^{3}-3 \sqrt{6} a b c $
Given:
\( 2 \sqrt{2} a^{3}+3 \sqrt{3} b^{3}+c^{3}-3 \sqrt{6} a b c \)
To do:
We have to multiply the given expressions.
Solution:
We know that,
$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$
$a^3 + b^3 + c^3 = 3abc$ if $a + b + c = 0$
Therefore,
$2 \sqrt{2} a^{3}+3 \sqrt{3} b^{3}+c^{3}-3 \sqrt{6} a b c=(\sqrt{2} a)^{3}+(\sqrt{3} b)^{3}+(c)^{3}-3 \times \sqrt{2} a \times \sqrt{3} b \times c$
$=(\sqrt{2} a+\sqrt{3} b+c)[(\sqrt{2} a)^{2}+(\sqrt{3} b)^{2}+c^{2}-\sqrt{2} a \times \sqrt{3} b-\sqrt{3} b \times c-c \times \sqrt{2} a]$
$=(\sqrt{2} a+\sqrt{3} b+c)(2 a^{2}+3 b^{2}+c^{2}-\sqrt{6} a b-\sqrt{3} b c-\sqrt{2} c a)$
Hence, $2 \sqrt{2} a^{3}+3 \sqrt{3} b^{3}+c^{3}-3 \sqrt{6} a b c=(\sqrt{2} a+\sqrt{3} b+c)(2 a^{2}+3 b^{2}+c^{2}-\sqrt{6} a b-\sqrt{3} b c-\sqrt{2} c a)$.
Advertisements