- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Factorize each of the following expressions:$ 3 \sqrt{3} a^{3}-b^{3}-5 \sqrt{5} c^{3}-3 \sqrt{15} a b c $
Given:
\( 3 \sqrt{3} a^{3}-b^{3}-5 \sqrt{5} c^{3}-3 \sqrt{15} a b c \)
To do:
We have to multiply the given expressions.
Solution:
We know that,
$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$
$a^3 + b^3 + c^3 = 3abc$ if $a + b + c = 0$
Therefore,
$3 \sqrt{3} a^{3}-b^{3}-5 \sqrt{5} c^{3}-3 \sqrt{15} a b c = (\sqrt{3} a)^{3}+(-b)^{3}+(-\sqrt{5} c)^{3}-3 \sqrt{3} a \times(-b) \times(-\sqrt{5} c)$
$=(\sqrt{3} a-b-\sqrt{5} c)[(\sqrt{3} a)^{2}+(-b)^{2}+(-\sqrt{5} c)^{2}-\sqrt{3} a \times(-b)-(-b)(-\sqrt{5} c)-(-\sqrt{5} c) \times \sqrt{3} a$
$=(\sqrt{3} a-b-\sqrt{5} c)(3 a^{2}+b^{2}+5 c^{2}+\sqrt{3} a b-\sqrt{5} b c+\sqrt{15} c a)$
Hence, $3 \sqrt{3} a^{3}-b^{3}-5 \sqrt{5} c^{3}-3 \sqrt{15} a b c = (\sqrt{3} a-b-\sqrt{5} c)(3 a^{2}+b^{2}+5 c^{2}+\sqrt{3} a b-\sqrt{5} b c+\sqrt{15} c a)$.