- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Factorise the following using appropriate identities:
(i) $ 9 x^{2}+6 x y+y^{2} $
(ii) $ 4 y^{2}-4 y+1 $
(iii) $ x^{2}-\frac{y^{2}}{100} $
To do:
We have to factorise the given expressions using appropriate identities.
Solution:
(i) \( 9 x^{2}+6 x y+y^{2} \)
\( 9 x^{2}+6 x y+y^{2} \) can be written as,
$9 x^{2}+6 x y+y^{2}=(3x)^2+2\times(3x)\times(y)+(y)^2$
Using the identity $a^2+2ab+b^2 = (a+b)^2$
Here,
$a = 3x$ and $b = y$
Therefore,
$9x^2+6xy+y^2 = (3x)^2+2(3x)(y)+y^2$
$= (3x+y)^2$
$= (3x+y)(3x+y)$
(ii) \( 4 y^{2}-4 y+1 \)
\( 4 y^{2}-4 y+1 \) can be written as,
$4 y^{2}-4 y+1=(2y)^2+2\times(2y)\times(-1)+(-1)^2$
Using the identity $a^2-2ab+b^2 = (a-b)^2$
Here,
$a = 2y$ and $b = -1$
Therefore,
$4y^2-4y+1 = (2y)^2-2(2y)(1)+(-1)^2$
$= (2y-1)^2$
$= (2y-1)(2y-1)$
(iii) \( x^{2}-\frac{y^{2}}{100} \)
\( x^{2}-\frac{y^{2}}{100} \) can be written as,
$x^{2}-\frac{y^{2}}{100}=(x)^2-(\frac{y}{10})^2$
Using the identity $a^2-b^2 = (a+b)(a-b)$
Here,
$a = x$ and $b = \frac{y}{10}$
Therefore,
$x^{2}-\frac{y^{2}}{100} = (x)^2-(\frac{y}{10})^2$
$=(x+\frac{y}{10})(x-\frac{y}{10})$