- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $x^2 + y^2 = 29$ and $xy = 2$, find the value of
(i) $x + y$
(ii) $x - y$
(iii) $x^4 + y^4$
Given:
$x^2 + y^2 = 29$ and $xy = 2$
To do:
We have to find the value of
(i) $x + y$
(ii) $x - y$
(iii) $x^4 + y^4$
Solution:
The given expressions are $x^2 + y^2 = 29$ and $xy = 2$. Here, we have to find the value of (i) $x + y$ (ii) $x - y$ (iii) $x^4 + y^4$. So, by using the identities $(a+b)^2=a^2+2ab+b^2$ and $(a-b)^2=a^2-2ab+b^2$, we can find the required values.
$xy = 2$.........(I)
$(a+b)^2=a^2+2ab+b^2$.............(II)
$(a-b)^2=a^2-2ab+b^2$.............(III)
(i)
Let us consider,
$x^2 + y^2 = 29$
Adding $2xy$ on both sides, we get,
$x^2+2xy+y^2=29+2xy$
$(x+y)^2=29+2(2)$ [Using (II) and (I)]
$(x+y)^2=29+4$
$(x+y)^2=33$
Taking square root on both sides, we get,
$(x+y)=\pm\sqrt{33}$
The value of $(x+y)$ is $\pm\sqrt{33}$.
(ii)
Let us consider,
$x^2 + y^2 = 29$
Subtracting $2xy$ on both sides, we get,
$x^2-2xy+y^2=29-2xy$
$(x-y)^2=29-2(2)$ [Using (III) and (I)]
$(x-y)^2=29-4$
$(x-y)^2=25$
Taking square root on both sides, we get,
$(x-y)=\sqrt{25}$
$x-y=\pm 5$
The value of $x-y$ is $\pm 5$.
(iii)
Let us consider,
$x^2 + y^2 = 29$
Squaring on both sides, we get,
$(x^2 + y^2)^2 = (29)^2$
$x^4+2x^2y^2+y^4=841$
$x^4+2(xy)^2+y^4=841$ (Since $a^mb^m=(ab)^m$)
$x^4+2(2)^2+y^4=841$ [Using (I)]
$x^4+2(4)+y^4=841$
$x^4+8+y^4=841$
$x^4+y^4=841-8$ (Transposing $8$ to RHS)
$x^4+y^4=833$
The value of $x^4+y^4$ is $833$.
- Related Articles
- If $x + y = 4$ and $xy = 2$, find the value of $x^2 + y^2$.
- Factorise the following using appropriate identities:(i) \( 9 x^{2}+6 x y+y^{2} \)(ii) \( 4 y^{2}-4 y+1 \)(iii) \( x^{2}-\frac{y^{2}}{100} \)
- If \( 2 x+y=23 \) and \( 4 x-y=19 \), find the values of \( 5 y-2 x \) and \( \frac{y}{x}-2 \).
- Factorize:$4(x - y)^2 - 12(x -y) (x + y) + 9(x + y)^2$
- If $x – y = 7$ and $xy = 9$, find the value of $x^2+y^2$.
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Find $25 x^{2}+16 y^{2}$, if $5 x+4 y=8$ and $x y=1$.
- Check if the following is true.\( (x+y)^{2}=(x-y)^{2}+4 x y \)
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- Factorise:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
- If $x = -2$ and $y = 1$, by using an identity find the value of the following:\( \left(4 y^{2}-9 x^{2}\right)\left(16 y^{4}+36 x^{2} y^{2}+81 x^{4}\right) \)
- Simplify: $2(x^2 - y^2 +xy) -3(x^2 +y^2 -xy)$.
- From the choices given below, choose the equation whose graphs are given in Fig. \( 4.6 \) and Fig. 4.7.For Fig. 4. 6(i) \( y=x \)(ii) \( x+y=0 \)(iii) \( y=2 x \)(iv) \( 2+3 y=7 x \)For Fig. \( 4.7 \)(i) \( y=x+2 \)(ii) \( y=x-2 \)(iii) \( y=-x+2 \)(iv) \( x+2 y=6 \)"\n
- Simplify: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- Simplify:\( 4(x+y)-6(x+y)^{2} \)
