Factorise:
(i) $ x^{3}-2 x^{2}-x+2 $
(ii) $ x^{3}-3 x^{2}-9 x-5 $
(iii) $ x^{3}+13 x^{2}+32 x+20 $
(iv) $ 2 y^{3}+y^{2}-2 y-1 $
To do:
We have to factorise the given expressions.
Solution:
(i) \( x^{3}-2 x^{2}-x+2 \)
Let $f(x)=x^{3}-2 x^{2}-x+2$
Factors of $2$ are $\pm 1$ and $\pm 2$. [Product of coefficient of $x^3$ and constant term $=1\times2=2$]
By trial and error method, we get,
$f(1)=(1)^{3}-2 (1)^{2}-(1)+2$
$=1-2(1)-1+2$
$=3-3$
$=0$
This implies,
$x-1$ is a factor of $f(x)$.
Therefore,
$f(x)=x^3-2x^2-x+2$
$= x^3 - x^2 - x^2 + x - 2x + 2$
$= x^2 (x - 1) - x (x - 1)-2 (x - 1)$
$= (x - 1)(x^2 - x - 2)$
$= (x - 1)(x^2 - 2x+x-2)$
$= (x - 1) [x (x - 2) + 1 (x - 2)]$
$= (x - 1) (x - 2)(x + 1)$
(ii) \( x^{3}-3 x^{2}-9 x-5 \)
Let $f(x)=x^{3}-3 x^{2}-9 x-5$
Factors of $-5$ are $\pm 1$ and $\pm 5$. [Product of coefficient of $x^3$ and constant term $=1\times-5=-5$]
By trial and error method, we get,
$f(5)=(5)^{3}-3 (5)^{2}-9(5)-5$
$=125-3(25)-45-5$
$=125-75-50$
$=125-125$
$=0$
This implies,
$x-5$ is a factor of $f(x)$.
Therefore,
$f(x)=x^3-3x^2-9x-5$
$= x^3-5x^2 + 2x^2-10x+x-5$
$= x^2(x - 5)+2x(x - 5)+1(x - 5)$
$= (x - 5) (x^2 + 2x + 1)$
$= (x - 5) (x^2 + x + x + 1)$
$= (x - 5) [x (x + 1)+ 1 (x+ 1)]$
$= (x - 5) (x + 1) (x + 1)$
$= (x - 5)(x+1)^2$
(iii) \( x^{3}+13 x^{2}+32 x+20 \)
Let $f(x)=x^{3}+13 x^{2}+32 x+20$
Factors of $20$ are $\pm 1, \pm 2 \pm 4, \pm 5, \pm 10$ and $\pm 20$. [Product of coefficient of $x^3$ and constant term $=1\times20=20$]
By trial and error method, we get,
$f(-1)=(-1)^{3}+13 (-1)^2+32(-1)+20$
$=-1+13(1)-32+20$
$=-33+13+20$
$=33-33$
$=0$
This implies,
$x-(-1)=x+1$ is a factor of $f(x)$.
Therefore,
$f(x)=x^{3}+13 x^{2}+32 x+20$
$= x^3+ x^2 + 12x^2 + 12x+ 20x+ 20$
$=x^2(x+ 1) + 12x(x+ 1)+ 20 (x+ 1)$
$= (x+1)(x^2+12x+20)$
$= (x+ 1) (x^2+ 10x + 2x+ 20)$
$= (x+1)[x(x+10)+2(x+10)]$
$= (x+ 1) (x+ 10) (x + 2)$
(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
Let $f(y)=2 y^{3}+y^{2}-2 y-1$
Factors of $-2$ are $\pm 1$ and $\pm 2$. [Product of coefficient of $y^3$ and constant term $=2\times-1=-2$]
By trial and error method, we get,
$f(1)=2(1)^{3}+ (1)^2-2(1)-1$
$=2+1-2-1$
$=3-3$
$=0$
This implies,
$y-1$ is a factor of $f(y)$.
Therefore,
$f(y)=2 y^{3}+y^{2}-2 y-1$
$= 2y^3 - 2y^2+ 3y^2 - 3y + y - 1$
$= 2y^2(y - 1) + 3y(y - 1)+1(y - 1)$
$= (y - 1) (2y^2 + 3y + 1)$
$= (y - 1)(2y^2 + 2y +y+1)$
$= (y - 1) [2y (y + 1) + 1 (y + 1)]$
$= (y - 1)(y+1)(2y+1)$
- Related Articles
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- Factorize:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
- Check whether the following are quadratic equations:(i) \( (x+1)^{2}=2(x-3) \)(ii) \( x^{2}-2 x=(-2)(3-x) \)(iii) \( (x-2)(x+1)=(x-1)(x+3) \)(iv) \( (x-3)(2 x+1)=x(x+5) \)(v) \( (2 x-1)(x-3)=(x+5)(x-1) \)(vi) \( x^{2}+3 x+1=(x-2)^{2} \)(vii) \( (x+2)^{3}=2 x\left(x^{2}-1\right) \)(viii) \( x^{3}-4 x^{2}-x+1=(x-2)^{3} \)
- Factorise:(i) \( 12 x^{2}-7 x+1 \)(ii) \( 2 x^{2}+7 x+3 \)(iii) \( 6 x^{2}+5 x-6 \)(iv) \( 3 x^{2}-x-4 \)
- Factorise the folowing:$3(x+y)^2-5(x+y) +2$
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- 1. Factorize the expression \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. Factorize the expression \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- Determine which of the following polynomials has \( (x+1) \) a factor:(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)(iii) \( x^{4}+3 x^{3}+3 x^{2}+x+1 \)(iv) \( x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2} \)
- Use suitable identities to find the following products:(i) \( (x+4)(x+10) \)(ii) \( (x+8)(x-10) \)(iii) \( (3 x+4)(3 x-5) \)(iv) \( \left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right) \)(v) \( (3-2 x)(3+2 x) \)
- Simplify: $\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$.
- Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- \( (2 x-3)(x-5)=(x-3)^{2} \)
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
Kickstart Your Career
Get certified by completing the course
Get Started