Divide the following.
$ x^{2} y-3 x y \ by \ y $
Given: $ x^{2} y-3 x y \ by \ y $
To do: Find the solution is $ x^{2} y-3 x y$ is divided by $y $
Solution:
$x^2 y - 3 x y$ divided by $y$
Take y as common from $x^2 y - 3 x y$
$y (x^2 - 3 x )$
now divide it by $y$
$y \frac{x^2 - 3 x }{y}$
$y \ and \ y$ get cancel ,
Therefore, $x^2 - 3 x $ is the answer
- Related Articles
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- Solve the following pairs of equations:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- Factorize:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
- Simplify: $\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$.
- 1. Factorize the expression \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. Factorize the expression \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- Find the sum of the following arithmetic progressions:\( \frac{x-y}{x+y}, \frac{3 x-2 y}{x+y}, \frac{5 x-3 y}{x+y}, \ldots \) to \( n \) terms
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- Factorise the following by using suitable identities.$(x+y)^2- (x-y)^2$
- Simplify each of the following expressions:\( (x+y-2 z)^{2}-x^{2}-y^{2}-3 z^{2}+4 x y \)
- Simplify each of the following:\( (2 x-5 y)^{3}-(2 x+5 y)^{3} \)
- Check if the following is true.\( (x+y)^{2}=(x-y)^{2}+4 x y \)
- Determine, algebraically, the vertices of the triangle formed by the lines$3 x-y=3$$2 x-3 y=2$$x+2 y=8$
- Solve the following system of equations:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- Solve the following system of equations:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
- Factorize:$4(x - y)^2 - 12(x -y) (x + y) + 9(x + y)^2$
Kickstart Your Career
Get certified by completing the course
Get Started