Factorize:$ x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} $
Given :
\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
To do :
We have to factorize the given expression.
Solution :
$x^3 - 2x^2y + 3xy^2 - 6y^3 = x^2(x - 2y) + 3y^2(x - 2y)$
$= (x - 2y) (x^2 + 3y^2)$
Hence, $x^3 - 2x^2y + 3xy^2 - 6y^3 =(x - 2y) (x^2 + 3y^2)$.
- Related Articles
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- 1. Factorize the expression \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. Factorize the expression \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- Simplify: $\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$.
- Verify that \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- Factorise:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
- Factorize the expression $x^3-y^2+x-x^2y^2$.
- Factorize:\( x\left(x^{3}-y^{3}\right)+3 x y(x-y) \)
- Solve:$\frac{3 x}{2}-\frac{5 y}{3}=-2$$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
- Simplify:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- Simplify: $2(x^2 - y^2 +xy) -3(x^2 +y^2 -xy)$.
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Solve the following pairs of equations:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- Factorize:\( x^{2}+y-x y-x \)
- Factorize the following1).$ 66(y^4-5y^3-24y^2) +6y(y-8)$2).$ 36mn(25m^2- 49n^2)+ 4mn(5m + 7n)$3). $x(x+2)(x+4)(x+6) + x(x+ 2)$
- Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
Kickstart Your Career
Get certified by completing the course
Get Started