Convert the following ratios to percentage: $( a).\ 3:1,\ ( b).\ 2:3:5,\ ( c).\ 1:4,\ ( d).\ 1:2:5$.
Given: $( a).\ 3:1,\ ( b).\ 2:3:5,\ ( c).\ 1:4,\ ( d).\ 1:2:5$
To do: To convert the given ratios to percentage.
Solution:
$( a).\ 3:1$
Total $=3+1=4$
Percentage of first part$=\frac{3}{4}\times100$
$=75$ %
Percentage of second part$=\frac{1}{4}\times100$
$=25$ %
$( b).\ 2:3:5$
Total $=2+3+5=10$
Percentage of first part$=\frac{2}{10}\times100=20$ %
Percentage of second part$=\frac{3}{10}\times100=30$ %
Percentage of third part$=\frac{5}{10}\times100=50$ %
$( c).\ 1:4$
Total $=1+4=5$
Percentage of first part$=\frac{1}{5}\times100=20$ %
Percentage of second part$=\frac{4}{5}\times100=80$ %
$( d).\ 1:2:5$
Total$=1+2+5=8$
Percentage of first part$=\frac{1}{8}\times100$
$=12.5$ %
Percentage of second part$=\frac{2}{8}\times100$
$=25$ %
Percentage of third part$=\frac{5}{8}\times100$
$=62.5$ %
- Related Articles
- Convert each part of the ratio to percentage:$(a).\ 3:1$ $(b).\ 2:3:5$ $(c).\ 1:4$ $(d).\ 1:2:5$
- Sum of the Series 1/(1*2) + 1/(2*3) + 1/(3*4) + 1/(4*5) + ... in C++\n
- Observe the following pattern$1 + 3 = 2^2$$1 + 3 + 5 = 3^2$$1+3 + 5 + 7 = 4^2$and write the value of $1 + 3 + 5 + 7 + 9 +…………$ upto $n$ terms.
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Simplify:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
- Simplify (i) +7 + 1 - 3 + 4 -2 - 5 + 7 - 2 + 1 -6 + 5(ii)+2 - 3 + 2 -5 + 1 - 3 + 8 - 4 + 3
- Following data gives the number of children in 41 families:$1, 2, 6, 5, 1, 5, 1, 3, 2, 6, 2, 3, 4, 2, 0, 0, 4, 4, 3, 2, 2, 0, 0, 1, 2, 2, 4, 3, 2, 1, 0, 5, 1, 2, 4, 3, 4, 1, 6, 2, 2.$Represent it in the form of a frequency distribution.
- The value of \( \frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}}=? \)A. \( \quad \frac{3}{2} \)B. \( \left(\frac{3}{2}\right)^{-4} \)C. \( \frac{1}{2^{-4} \times 3^{-4}} \)D. \( \frac{1}{2^{4} \times 3^{-4}} \)
- Observe the following pattern$1=\frac{1}{2}\{1 \times(1+1)\}$$1+2=\frac{1}{2}\{2 \times(2+1)\}$$1+2+3=\frac{1}{2}\{3 \times(3+1)\}$$1+2+3+4=\frac{1}{2}\{4 \times(4+1)\}$and find the values of each of the following:(i) $1 + 2 + 3 + 4 + 5 +….. + 50$(ii)$31 + 32 +… + 50$
- A ]Solve the Following :$1 . 9 + ( -3)$$2 . -5 + ( -2)$$3 . 8 + 6$$4 . -3 - ( -5)$$5 . 9 - ( -4)$B ] Write the opposite number of the following numbers.$1 . 47$$2 . -21$$3 . -30$
- C++ program to find the sum of the series (1*1) + (2*2) + (3*3) + (4*4) + (5*5) + … + (n*n)
- The following are the margins of victory in the matches of a football league : 3, 2, 1, 5, 6, 4, 2, 1, 3, 1, 2, 1, 4, 2, 5, 5, 6, 2, 3, 2 Find the mean of the data.
- Add the following:$3\frac{1}{5} + 2\frac{1}{3}$
- Observe the following pattern\( (1 \times 2)+(2 \times 3)=\frac{2 \times 3 \times 4}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)=\frac{3 \times 4 \times 5}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)=\frac{4 \times 5 \times 6}{3} \)and find the value of\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+(5 \times 6) \)
- Solve the following:$3 \frac{2}{5} \div \frac{4}{5} of \frac{1}{5} + \frac{2}{3} of \frac{3}{4} - 1 \frac{35}{72}$.
Kickstart Your Career
Get certified by completing the course
Get Started