- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Observe the following pattern
$1=\frac{1}{2}\{1 \times(1+1)\}$
$1+2=\frac{1}{2}\{2 \times(2+1)\}$
$1+2+3=\frac{1}{2}\{3 \times(3+1)\}$
$1+2+3+4=\frac{1}{2}\{4 \times(4+1)\}$
and find the values of each of the following:
(i) $1 + 2 + 3 + 4 + 5 +….. + 50$
(ii)$31 + 32 +… + 50$
To do:
We have to find the values of the given series.
Solution:
We observe that,
$1=\frac{1}{2}\{1 \times(1+1)\}$
$1+2=\frac{1}{2}\{2 \times(2+1)\}$
$1+2+3=\frac{1}{2}\{3 \times(3+1)\}$
$1+2+3+4=\frac{1}{2}\{4 \times(4+1)\}$
Therefore,
(i) $1+2+3+4+5+\ldots . .+50=\frac{1}{2}\{50 \times(50+1)\}$
$=\frac{1}{2} \times 50 \times 51$
$=1275$
(ii) $(1+2+3+4+\ldots . .+50)-(1+2+3+4+\ldots . .+30)=\frac{1}{2}\{50 \times(50+1)\}-\frac{1}{2}\{30 \times(30+1)\}$
$=\frac{1}{2} \times 50 \times 51-\frac{1}{2} \times 30 \times 31$
$=1275-465$
$=810$
- Related Articles
- Observe the following pattern\( 1^{2}=\frac{1}{6}[1 \times(1+1) \times(2 \times 1)+1)] \)\( 1^{2}+2^{2}=\frac{1}{6}[2 \times(2+1) \times(2 \times 2)+1)] \)\( 1^{2}+2^{2}+3^{2}=\frac{1}{6}[3 \times(3+1) \times(2 \times 3)+1)] \)\( 1^{2}+2^{2}+3^{2}+4^{2}=\frac{1}{6}[4 \times(4+1) \times(2 \times 4)+1)] \)and find the values of each of the following:(i) $1^2 + 2^2 + 3^2 + 4^2 +…………… + 10^2$(ii)$5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2$
- Simplify:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
- Observe the following pattern\( (1 \times 2)+(2 \times 3)=\frac{2 \times 3 \times 4}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)=\frac{3 \times 4 \times 5}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)=\frac{4 \times 5 \times 6}{3} \)and find the value of\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+(5 \times 6) \)
- Simplify:(i) \( \left\{\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right\} \div\left(\frac{1}{4}\right)^{-3} \)(ii) \( \left(3^{2}-2^{2}\right) \times\left(\frac{2}{3}\right)^{-3} \)(iii) \( \left\{\left(\frac{1}{2}\right)^{-1} \times(-4)^{-1}\right\}^{-1} \)(iv) \( \left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{-2}\right]^{-1} \)(v) \( \left\{\left(\frac{2}{3}\right)^{2}\right\}^{3} \times\left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times 6^{-1} \)
- Find the values of each of the following:(i) \( \left(\frac{1}{2}\right)^{-1}+\left(\frac{1}{3}\right)^{-1}+\left(\frac{1}{4}\right)^{-1} \)(ii) \( \left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2} \)(iii) \( \left(2^{-1} \times 4^{-1}\right) \div 2^{-2} \)(iv) \( \left(5^{-1} \times 2^{-1}\right) \div 6^{-1} \)
- Solve:$3\frac{2}{7} \ \div \ 4\frac{3}{5} \ \times \ 1\frac{1}{2}$
- Solve $7\frac{1}{3}\div \frac{2}{3}$ of $2\frac{1}{5}+1\frac{3}{8}\div 2\frac{3}{4}-1 \frac{1}{2}$.
- The value of \( \frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}}=? \)A. \( \quad \frac{3}{2} \)B. \( \left(\frac{3}{2}\right)^{-4} \)C. \( \frac{1}{2^{-4} \times 3^{-4}} \)D. \( \frac{1}{2^{4} \times 3^{-4}} \)
- Evalute:(i) $(5)^{-2}$(ii) $(-3)^{-2}$(iii) $(\frac{1}{3})^{-4}$(iv) $(\frac{-1}{2})^{-1}$
- Find the values of each of the following(i) \( 3^{-1}+4^{-1} \)(ii) \( \left(3^{0}+4^{-1}\right) \times 2^{2} \)(iii) \( \left(3^{-1}+4^{-1}+5^{-1}\right)^{0} \)(iv) \( \left\{\left(\frac{1}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}^{-1} \)
- Observe the following pattern.$2^{3}-1^{3}=1+2 \times 1 \times 3$$3^{2}-2^{3}=1+3 \times 2 \times 3$$4^{3}-3^{3}=1+4 \times 3 \times 3$Using this pattern, find the value of each of the following.$( a).\ 81^{3}-80^{3}$$( b).\ 100^{3}-99^{3}$
- Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
- Find the value of:$\left(\frac{3}{4}\ +\ \frac{1}{4}\right)\ \div\ 2\frac{1}{2}\ -\ \left(\frac{2}{3}\ \times\ \frac{7}{8}\right)\ \div\ 1\frac{1}{4}$
- If \( 1 \frac{1}{2} \times 2 \frac{2}{3} \times 3 \frac{3}{4} \times \ldots \times 199 \frac{199}{200}=\frac{1}{m}, \) then find the value of \( m \).
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)

Advertisements