- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The value of $ \frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}}=? $
A. $ \quad \frac{3}{2} $
B. $ \left(\frac{3}{2}\right)^{-4} $
C. $ \frac{1}{2^{-4} \times 3^{-4}} $
D. $ \frac{1}{2^{4} \times 3^{-4}} $
Given:
\( \frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}} \)
To do:
We have to find the value of \( \frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}} \).
Solution:
We know that,
$(a^m)^n=a^{m\times n}$ $\frac{a^m}{b^m}=(\frac{a}{b})^m$ Therefore,
$\frac{\left((243)^{1 / 5}\right)^{4}}{\left((32)^{1 / 5}\right)^{4}}= \frac{\left((3^5)^{1 / 5}\right)^{4}}{\left((2^5)^{1 / 5}\right)^{4}}$
$=\frac{((3)^{5\times\frac{1}{5}})^4}{((2)^{5\times\frac{1}{5}})^4}$
$=\frac{(3)^{1\times4}}{(2)^{1\times4}}$
$=\frac{3^4}{2^4}$
$=(\frac{3}{2})^4$
$=\frac{1}{3^{-4}}\times\frac{1}{2^4}$
$=\frac{1}{3^{-4}\times2^4}$.
Option D is the correct answer.
Advertisements